
Certified Normalization of Context-Free Grammars

Denis Firsov Tarmo Uustalu
Institute of Cybernetics at TUT

{denis,tarmo}@cs.ioc.ee

Abstract
Every context-free grammar can be transformed into an equivalent
one in the Chomsky normal form by a sequence of four transforma-
tions. In this work on formalization of language theory, we prove
formally in the Agda dependently typed programming language
that each of these transformations is correct in the sense of making
progress toward normality and preserving the language of the given
grammar. Also, we show that the right sequence of these transfor-
mations leads to a grammar in the Chomsky normal form (since
each next transformation preserves the normality properties estab-
lished by the previous ones) that accepts the same language as the
given grammar. As we work in a constructive setting, soundness
and completeness proofs are functions converting between parse
trees in the normalized and original grammars.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—correctness proofs; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs; F.4.2 [Mathematical Logic and For-
mal Languages]: Grammars and Other Rewriting Systems

Keywords certified programs; context-free grammars; Chomsky
normal form; normalization; dependently typed programming;
Agda

1. Introduction
In formal language theory, a context-free grammar (CFG) is said to
be in the Chomsky normal form (CNF), if all of its production rules
are of the form: A −→ BC, A −→ a, or S −→ ε, where A, B and
C are nonterminals, a is a terminal, S is the start nonterminal. Also,
neither B nor C may be the start nonterminal.

Context-free grammars in the Chomsky normal form are very
convenient to work with. It is often assumed that either CFGs are
given in CNF from the beginning or there is an intermediate step
of normalization. For example, Minamide [8] has implemented and
proved correct three sophisticated decision procedures for context-
free languages specified by CNF grammars:

• inclusion between a context-free language and a regular lan-
guage;

• balancedness of a context-free language;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CPP ’15, January 13–14, 2015, Mumbai, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676724.2693177

• inclusion between a context-free language and a regular hedge
language.

Having a certified implementation of normalization for CFGs en-
ables us to lift these decision procedures to context-free languages
defined by CFGs in general form without losing the guarantees of
correctness.

Another example is our previous work [3], where we reported
on a certified implementation of the Cocke–Younger–Kasami
(CYK) parsing algorithm in the Agda dependently typed program-
ming language [9]. The CYK algorithm works only with grammars
in the Chomsky normal form. Now, with a certified implementa-
tion of the CFG normalization algorithm we extend the reach of
this work. Namely, to parse a string s for some general CFG G we
could proceed as follows:

• normalize G into a CNF G’;
• parse s by using the certified implementation of the CYK algo-

rithm and get a parse tree t for the grammar G’;
• finally, convert the parse tree t for the grammar G’ to a parse

tree t’ for the grammar G with the constructive soundness proof
of normalization of G (which is a function from parse trees to
parse trees).

Both examples demonstrate how certified normalization enables
us to adopt certified development from CNF grammars to general
CFGs retaining the correctness guarantees.

The full normalization transformation for a CFG is the compo-
sition of the following constituent transformations [1]:

1. elimination of all ε-rules (i.e., rules of the form A −→ ε)
(Section 3);

2. elimination all unit rules (i.e., rules of the form A −→ B)
(Section 4);

3. replacing all rules A −→ X1X2 ... Xk where k ≥ 3 with
rules A −→ X1A1, A1 −→ X2A2, Ak-2 −→ Xk-1Xk where Ai are
“fresh” nonterminals (Section 5.1);

4. for each terminal a, adding a new rule A −→ a where A is a
fresh nonterminal and replacing a in the right-hand sides of all
rules with length at least two with A (Section 5.2).

The algorithms for the first, third and fourth transformations are
functional versions of the classical imperative algorithms de-
scribed, e.g., in [1]. The approach to eliminating unit rules is a
little different and is designed to support certified development
(uses a recursion that is easily presented as wellfounded).

We prove the correctness of this normalization transformation
by showing that a given CFG and the corresponding CNF grammar
accept the same language. Because we work in a constructive
framework, the proof consists of total functions converting parse
trees of the normalized grammar to the given grammar (soundness)
and in the converse direction (completeness) (Section 6).

We used Agda 2.4.2 and Agda Standard Library 0.8.1 for this
development. The full Agda code of this paper can be found at
http://cs.ioc.ee/~denis/cert-norm/.

2. Setup
We assume that N and T are some fixed types for nonterminals and
terminals respectively. We only require N and T to have decidable
equality. Symbols are terminals and nonterminals. A rule is defined
as a pair of a nonterminal and a list of symbols. We also define
some handy abbreviations:

data Symbol : Set where
nt : N → Symbol
tm : T → Symbol

RHS = List Symbol

data Rule : Set where
−→ : N → RHS → Rule

Rules = List Rule

Ts : Rules → List T
Ts Rs = { a | A −→ rhs ∈ Rs, tm a ∈ rhs }

NTs : Rules → List N
NTs Rs = { A | A −→ rhs ∈ Rs } ∪

{ B | A −→ rhs ∈ Rs, nt B ∈ rhs }

String = List T

(To avoid notational clutter, in the paper we employ an easy-to-read
unofficial list comprehension syntax.)

For now and for most of the paper, we assume that a grammar
is just a list of rules, we do not assume a fixed start nonterminal. In
Section 6.2, we define a grammar as a list of rules together with a
designated start nonterminal.

The datatype of the parse trees (abstract syntax trees) is param-
etrized by a grammar Rs and is defined inductively as follows:

mutual
data Tree (Rs : Rules) : N → String → Set where

node : {A : N}{rhs : RHS}{s : String}
→ A −→ rhs ∈ Rs
→ Forest Rs rhs s → Tree Rs A s

data Forest (Rs : Rules) :
RHS → String → Set where

empty : Forest Rs [] []
::t : {rhs : RHS}{s : String}

→ (t : T) → Forest Rs rhs s
→ Forest Rs (tm t :: rhs) (t :: s)

::n : {rhs : RHS}{s1 s2 : String}{A : N}
→ Tree Rs A s1 → Forest Rs rhs s2
→ Forest Rs (nt A :: rhs) (s1 ++ s2)

(In Agda, an argument enclosed in curly braces is implicit. The
Agda type checker will try to figure it out. If an argument cannot
be inferred, it must be provided explicitly.)

In general, the type Tree Rs A s collects all parse trees for
a string s for a grammar Rs and a nonterminal A at the root. The
auxiliary type Forest Rs rhs s collects all parse forests for a
string s whose constituent individual parse trees are rooted at the
symbols in rhs.

Let us look at the following example. Consider the following
grammar Rs with two rules. Their proofs of membership in the
grammar serve as names for these rules.

Rs : Rules
Rs = [S −→ [nt S , tm ‘+‘ , nt S],

S −→ [tm ‘1‘]]

fr : S −→ [nt S , tm ‘+‘ , nt S] ∈ Rs
sr : S −→ [tm ‘1‘] ∈ Rs

The strings "1" and "1+1" have the following unique derivations:

1T : Tree Rs S "1"
1T = node sr (‘1‘ ::t empty)

1+1T : Tree Rs S "1+1"
1+1T = node fr (1T ::n ‘+‘ ::t 1T ::n empty)

But the string "1+1+1" has two derivations:

S

S

1+

S

S

1+

S

1
lft : Tree Rs S "1+1+1"

lft : Tree Rs S "1+1+1"
lft = node fr (1+1T ::n ‘+‘ ::t 1T ::n empty)

S

S

S

1+

S

1+

S

1
rgt : Tree Rs S "1+1+1"

rgt : Tree Rs S "1+1+1"
rgt = node fr (1T ::n ‘+‘ ::t 1+1T ::n empty)

3. ε-rule elimination and its correctness
The main consequence of the presence of ε-rules in a grammar is
that parse trees for the empty string can be constructed for some
nonterminals. A nonterminal A is called nullable for a grammar Rs,
if one can construct a parse tree for the empty string with A at the
root, i.e., an inhabitant of the type Tree Rs A []. We describe the
transformation of ε-rule elimination:

1. find all nullable nonterminals;

2. for each rule with some nullable nonterminals in its right-hand
side rhs, add a set of new rules given by all subsequences of
rhs obtained by dropping some nullable nonterminals;

3. remove every rule whose right-hand side is empty string.

For example, for the grammar

S −→ AbA | B
B −→ b | c
A −→ ε | d

the transformation produces the following grammar:

http://cs.ioc.ee/~denis/cert-norm/

S −→ AbA | Ab | bA | b | B
B −→ b | c
A −→ d

Note that the transformation makes all nonterminals non-nullable:
for a nonterminal nullable for the given grammar, the language
of this nonterminal in the transformed grammar differs from its
language in the original grammar by the absence of the empty word.

3.1 Nullable nonterminals
In this section, we describe how to find all nullable nonterminals
of a grammar. We use the following observation: if a nonterminal
A is nullable, then there exists a rule A −→ rhs ∈ Rs such that
rhs consists only of nullable nonterminals (in particular, it is also
possible that rhs ≡ []). Therefore, to find all nullable nontermi-
nals, we iteratively build all trees for the empty string. Here is the
algorithm:

nlbls : Rules → N → List N
nlbls Rs zero = start
nlbls Rs (suc n) = collect (nlbls Rs n)

where
start = { A | A −→ [] ∈ Rs }
collect ans
= { A | A −→ rhs ∈ Rs ,

(B : N) → nt B ∈ rhs → B ∈ ans }

Clearly, the algorithm is sound (by construction):

nlbls-snd : (Rs : Rules) → (A : N) → (n : N)
→ A ∈ nlbls Rs n → Tree Rs A []

But how many iterations do we need for the completeness? Let us
look at a weak version of completeness:

nlbls-cmplt-weak : (Rs : Rules) → (A : N)
→ (t : Tree Rs A []) → A ∈ nlbls Rs (height t)

By induction on the height of the parse tree, we can easily prove
this lemma. But the lemma is too weak, because it depends on the
height of the input parse tree and this is not bounded. We need to
find a number of iterations that is sufficient for every possible parse
tree.

We prove that length Rs (denotes the number of the rules in
the grammar) many iterations is enough:

nlbls-cmplt : (Rs : Rules) → (A : N)
→ Tree Rs A [] → A ∈ nlbls Rs (length Rs)

Proof If height t≤ length Rs, then the theorem is proved by
nlbls-cmplt-weak. If height t> length Rs, then there exists
at least one branch in the parse tree with at least one rule used
twice. Suppose this rule is r : B −→ rhs ∈ Rs. Next, let the
subtrees rooted at the left-hand nonterminal B of the rule r be
t and t’, t’ being a subtree of t. Both t and t’ have type
Tree Rs B []. Therefore, we can substitute t’ for t and still get
a parse tree of type Tree Rs A []. This procedure can be repeated
until height t ≤ length Rs.

Finally, we define an abbreviation:

nullables : Rules → List N
nullables Rs = nlbls Rs (length Rs)

3.2 Subsequences
In this section, we describe how to compute certain subsequences
of a list. More precisely, given some list xs : List X and some
predicate P : X → Bool, we would like to compute all subse-
quences of xs obtainable by dropping some elements satisfying P.

allSubSeq : {X : Set} → (X → Bool)
→ List X → List (List X)

allSubSeq P xs
= foldr (λ x res →

if P x then res ++ (map (_::_ x) res)
else map (_::_ x) res)

[[]] xs

For an explanation, let us look at the example:

allSubSeq (≡ nt A) [nt A, nt B, nt A, nt C] ⇒
[[nt A, nt B, nt A, nt C],

[nt B, nt A, nt C],
[nt A, nt B, nt C],
[nt B, nt C]]

To generate all subsequences of some list xs, one could call
allSubSeq (λ _ → true) xs. The function allSubSeq func-
tion is sound and complete in the sense that it generates all desired
subsequences and nothing else (a formalization can be found in our
development).

3.3 ε-rule elimination
Finally, to eliminate ε-rules, we combine the allSubSeq and
nullables:

norm-e : Rules → Rules
norm-e Rs = { A −→ rhs’ | A −→ rhs ∈ Rs ,

rhs’ ∈ allSubSeq (∈ nullables Rs) rhs ,
rhs’ 6≡ [] }

First, we find all nullable nonterminals in the grammar. Then, for
each rule A −→ rhs in Rs, we compute all subsequences rhs’
of rhs obtainable by dropping some nullable nonterminals in rhs.
Finally, for all nonempty rhs’, the rule A −→ rhs’ is added to
the resulting grammar.

3.4 Correctness
Progress Observe that the function norm-e explicitly excludes
rules with empty right-hand sides. Therefore, it is simple to show
that, for any grammar Rs, the normalized grammar norm-e Rs has
no ε-rules:

ne-progress : (Rs : Rules) → (A : N)
→ A −→ [] /∈ norm-e Rs

Soundness Next, let us show soundness. Namely, given some tree
in the normalized grammar Tree (norm-e Rs) A s, we would
like to construct a parse tree of s in the original grammar Rs:

ne-snd : (Rs : Rules) → (A : N) → (s : String)
→ Tree (norm-e Rs) A s → Tree Rs A s

Proof The proof is by induction on the height of
t : Tree (norm-e Rs) A s. Pattern matching yields
f : Forest (norm-e Rs) rhs s and
r : A −→ rhs ∈ norm-e Rs such that t ≡ node r f. For
each tree t’ of type Tree (norm-e Rs) B s’ such that t’ ∈ f,
by the induction hypothesis, we construct a tree Tree Rs B s’.
Hence, we can construct f’ : Forest Rs rhs s. Next, analyze
the rule A −→ rhs. If r’ : A −→ rhs ∈ Rs, then the proof is
completed by the witness node r’ f’. If A −→ rhs /∈ Rs, then
by the definition of norm-e there exists some rule
r’ : A −→ rhs’ ∈ Rs such that
rhs ∈ allSubSeq (∈ nullables Rs) rhs’. By soundness
of allSubSeq, the list rhs is a subsequence of rhs’. Moreover,
the nonterminals of all removed positions in rhs’ are contained
in nullables Rs. Therefore, the proof can be completed by the
witness node r’ f’’ : Tree Rs A s, where f’’ is constructed

from f’ by putting trees for the empty string (produced by using
soundness of nullables) at the dropped positions of rhs’.

Completeness Conversely, given a parse tree for some non-empty
string (recall that norm-e makes all nonterminals non-nullable) in
the original grammar, we can convert it into a parse tree in the
normalized grammar:

ne-cmplt : (Rs : Rules) → (A : N) → (s : String)
→ Tree Rs A s → s 6≡ [] → Tree (norm-e Rs) A s

Proof The proof is by induction on the height of the parse tree
t : Tree Rs A s. By pattern matching, we have t ≡ node r f
where f : Forest Rs rhs s and r : A −→ rhs ∈ Rs. For
each tree t’ : Tree Rs B s’ such that t’ ∈ f, let us analyze
the possible cases:

• If s’ 6≡ [], then by the induction hypothesis, we can construct
Tree (norm-e Rs) A s’.

• If s’ ≡ [], then by nlbls-cmplt, we have that
B ∈ nullables Rs.

Therefore, f’ : Forest (norm-e Rs) rhs’ s can be con-
structed where rhs’ is a subsequence of rhs (the positions at
which f : Forest Rs rhs s contains trees for the empty string
are skipped). If rhs’ 6≡ [], then by completeness of nullables
and allSubSeq, we get that r’ : A −→ rhs’ ∈ norm-e Rs
and the proof is completed by the witness node r’ f’. If
rhs’ ≡ [], then s should be empty (all positions are nulled),
but this contradicts the assumption that s 6≡ [].

3.5 Example
Consider the following grammar Rs:

A −→ BCD | B
B −→ ε | A
C −→ c
D −→ ε

Since B and D are the only nullable nonterminals, the grammar
norm-e Rs has the following rules:

A −→ BCD | B | CD | BC | C
B −→ A
C −→ c

The nonterminal D in the grammar norm-e Rs is nonproductive
(i.e., (s : String) → Tree (norm-e Rs) D s → ⊥). Let
us look at the example of a tree t for the original grammar Rs and
its counterpart for the ε-normalized grammar norm-e Rs:

A

D

ε

C

c

B

A

B

ε

t : Tree Rs A "c"

A

C

c
ne-cmplt t : Tree (norm-e Rs) A "c"

Note, that for the converse direction ne-snd (ne-cmplt t) 6≡ t
(there are many ways to construct subtrees for empty word):

A

D

ε

C

c

B

ε

ne-snd (ne-cmplt t) : Tree Rs A "c"

4. Unit rule elimination and its correctness
4.1 Implementation
We describe in list comprehension notation how unit rules with a
particular right-hand nonterminal are eliminated:

nu-step : Rules → N → Rules
nu-step Rs A
= { rule’ | rule ∈ Rs, rule’ ∈ step-f Rs A rule }
where

step-f : Rules → N → Rule → Rules
step-f Rs A (B −→ rhs) =

if rhs ≡ [nt A] then
{ B −→ rhs’ | A −→ rhs’ ∈ Rs,

rhs’ 6≡ [nt A] }
else [B −→ rhs]

Compared to the grammar Rs, in the grammar nu-step Rs A
every rule of the form B −→ [nt A] is replaced with all rules
of the form B −→ rhs’, where rhs’ stands for a right-hand side
such that A −→ rhs’ ∈ Rs and rhs’ 6≡ [nt A]. Now, full
unit rule elimination is achieved by applying this procedure to all
nonterminals:

norm-u : Rules → Rules
norm-u Rs = foldl nu-step Rs (NTs Rs)

Recall that NTs Rs is an enumeration of all nonterminals appearing
in the grammar Rs.

4.2 Correctness
Progress First, we show that nu-step gains some progress:

nu-step-progress : (Rs : Rules) → (A B : N)
→ A −→ [nt B] /∈ nu-step Rs B

This lemma states that there is no rule with the right-hand side
[nt B] in the grammar nu-step Rs B. The progress lemma
for the norm-u is a trivial consequence:

nu-progress : (Rs : Rules) → (A B : N)
→ A −→ [nt B] /∈ norm-u Rs

Soundness We start by proving a lemma about possible shapes of
rules in the original grammar:

nu-sound-main : (Rs : Rules) → (A B : N)
→ (rhs : RHS) → A −→ rhs ∈ nu-step Rs B
→ A −→ rhs ∈ Rs

∨ (A −→ [nt B] ∈ Rs × B −→ rhs ∈ Rs)

This lemma shows that, if a rule A −→ rhs belongs to a normal-
ized grammar nu-step Rs B, then either the rule A −→ rhs be-
longs to Rs or the rules A −→ [nt B] and B −→ rhs do.

Now, we show how soundness follows from nu-sound-main:

nu-step-sound : (Rs : Rules) → (A B : N)
→ (s : String)
→ Tree (nu-step Rs B) A s → Tree Rs A s

Proof The proof is by induction on the height of the tree
t : Tree (nu-step Rs B) A s. Pattern matching on t yields
some f of type Forest (nu-step Rs B) rhs s and
p : A −→ rhs ∈ (nu-step Rs B) such that t ≡ node p f.
Next, for all trees t’ : Tree (nu-step Rs B) C s’ such that
t’ ∈ f, by the induction hypothesis, we turn t’ into
t’’ : Tree Rs C s’. Therefore, by induction on the length of f,
a forest f’ : Forest Rs rhs s can be constructed. Finally, by
nu-sound-main we have two cases:

• p’ : A −→ rhs ∈ Rs. Then the proof is completed by con-
structing the witness node p’ f’ : Tree Rs A s.

• p’ : A −→ [nt B] ∈ Rs and p’’ : B −→ rhs ∈ Rs.
Then the proof is completed by the giving the witness
node ((node p’’ f’) ::n empty) p’ which has type
Tree Rs A s.

Soundness of norm-u follows trivially from nu-step-sound:

nu-snd : (Rs : Rules) → (A : N) → (s : String)
→ Tree (norm-u Rs) A s → Tree Rs A s

Completeness We start again by observing special properties:

nu-cmplt’ : (Rs : Rules) → (A B : N)
→ (rhs : RHS) → A −→ [nt B] ∈ Rs
→ B −→ rhs ∈ Rs → rhs 6≡ [nt B]
→ A −→ rhs ∈ nu-step Rs B

nu-cmplt’’ : (Rs : Rules) → (A B : N)
→ (rhs : RHS) → A −→ rhs ∈ Rs
→ rhs 6≡ [nt B] → A −→ rhs ∈ nu-step Rs B

The nu-cmplt’ lemma states that, if rules A −→ [nt B] and
B −→ rhs belong to Rs and rhs 6≡ [nt B], then the rule
A −→ rhs belongs to the normalized grammar nu-step Rs B.
At the same time the lemma nu-cmplt’’ establishes that rules
A −→ rhs where rhs 6≡ [nt B] will stay in the normalized
grammar.

Using this property, completeness is proved by induction on a
given parse tree and inspection of rules at two consecutive levels.

nu-step-complete : (Rs : Rules)
→ (A B : N) → (s : String)
→ Tree Rs A s → Tree (nu-step Rs B) A s

Proof The claim is proved by induction on the height of the
tree t of type Tree Rs A s. Pattern matching on t yields some
f : Forest Rs rhs s and p : A −→ rhs ∈ Rs such that
t ≡ node p f. Next, for all trees t’ : Tree Rs C s’ such that
t’ ∈ f, by the induction hypothesis, we construct
t’’ : Tree (nu-step Rs B) C s’. So, by induction on the
length of f, we get f’ : Forest (nu-step Rs B) rhs s. Fi-
nally, let us analyze two cases:

• If rhs 6≡ [nt B], then by nu-cmplt’’ we have
p’ : A −→ rhs ∈ nu-step Rs B and proof is finished by
the witness node p’ f’ : Tree (nu-step Rs B) A s.

• If rhs ≡ [nt B], then the previously constructed f’ sat-
isfies f’ ≡ (node q f’’) ::n empty where f’’ is of type
Forest (nu-step Rs B) rhs’ s and q is of type
B −→ rhs’ ∈ nu-step Rs B. By nu-step-progress we
know that rhs’ 6≡ [nt B], therefore, by nu-cmplt’ we
get p’ : A −→ rhs’ ∈ nu-step Rs B. Finally, the wit-
ness node p’ f’ of type Tree (nu-step Rs B) A s con-
cludes the proof.

And lifting this result to the full elimination of unit rules:

nu-cmplt : (Rs : Rules) → (A : N) → (s : String)
→ Tree Rs A s → Tree (norm-u Rs) A s

4.3 Example
Consider the grammar

A −→ CA | B | a
B −→ b | A
C −→ BA

After the norm-u transformation we have:

A −→ CA | a | b
B −→ b | CA | a
C −→ BA

Observe how an example tree for the original grammar is trans-
formed into a tree for the normalized grammar:

A

A

B

A

B

b

C

A

a

B

b

t : Tree Rs A "bab"

A

A

b

C

A

a

B

b

nu-cmplt t : Tree (norm-u Rs) A "bab"

Mapping this tree back from the normalized grammar to the
original grammar gives a tree with the unit loop cut out:

A

A

B

b

C

A

a

B

b
nu-snd (nu-cmplt t) : Tree Rs A "bab"

Making the exact relationship between maps nu-cmplt and nu-snd
precise is a possible future work.

5. Final transformations
5.1 Long right-hand sides
Next, we describe how to eliminate rules A −→ rhs where
length rhs > 2—so-called long rules.

To do so, we first need a function that will supply fresh nonter-
minals,

newnt : Rules → N

and a proof that newnt Rs does not occur anywhere in the grammar
Rs:

newnt-lem : (Rs : Rules) → newnt Rs /∈ NTs Rs

The above states that newnt Rs is a “fresh” nonterminal. Note that
there are no side effects involved here, the expression newnt Rs
always returns the same nonterminal. Hence, to get the next “fresh”
nonterminal, one must first embed the current one in the grammar.

For an explanation, assume that N = T = N. Then, let us define
newnt and Rs as follows:

newnt : Rules → N
newnt Rs = 1 + max (NTs Rs)

Rs : Rules
Rs = [1 −→ [nt 2, tm 3, nt 4]]

Rs’ : Rules
Rs’ = 1 −→ [nt (newnt Rs)] :: Rs

In that case, newnt Rs ≡ 5. Also, if we define Rs’ by adding the
rule 1 −→ [nt (newnt Rs)] to Rs, then newnt Rs’ ≡ 6.

Next, we are ready to define a step of normalization:

nl-step’ : Rules → N → Rules
nl-step’ ((A −→ X :: Y :: Z :: rhs) :: Rs) F =

(A −→ nt F :: Z :: rhs) ::
(F −→ X :: Y :: []) :: Rs

nl-step’ ((A −→ rhs) :: Rs) F =
(A −→ rhs) :: nl-step’ Rs F

nl-step’ [] F = []

nl-step : Rules → Rules
nl-step Rs = nl-step’ Rs (newnt Rs)

The function nl-step looks for the first long rule of the form
A −→ X :: Y :: Z :: rhs and replaces it with rules
A −→ nt F :: Z :: rhs and F −→ X :: Y :: []
where F is fresh.

After applying the function nl-step to the grammar Rs, the
sum of the lengths of the right-hand sides of all long rules de-
creases. This will be the measure of how many times nl-step
needs to be applied to the grammar Rs.

nl-measure : Rules → N

nl-measure Rs = sum lengths
where

lengths = { length rhs | A −→ rhs ∈ Rs,
length rhs > 2 }

So, to eliminate all long rules, we apply the function nl-step
to the set of rules (nl-measure Rs) times.

norm-l : Rules → Rules
norm-l Rs = fold Rs nl-step (nl-measure Rs)

5.2 Right-hand sides containing terminals
In what follows, we describe how to eliminate rules A −→ rhs
where rhs contains terminals and length rhs > 1.

The function nt-step Rs a adds to the grammar Rs the rule
newnt Rs −→ tm a and substitutes the symbol tm a with the
symbol nt (newnt Rs) in the right-hand side of every rule whose
right-hand side is longer than 1.

nt-step : Rules → T → Rules
nt-step Rs a = let F = newnt Rs in
F −→ tm a ::
{ A −→ subst (tm a) (nt F) rhs |

A −→ rhs ∈ Rs }
where
subst : Symbol → Symbol → RHS → RHS
subst X Y rhs =
if length rhs ≤ 1
then rhs
else map (λ Z → if Z ≡ X then Y else Z) rhs

Finally, remove all terminals from right-hand sides longer than 1
by folding Rs with the function nt-step:

norm-t : Rules → Rules
norm-t Rs = foldl nt-step Rs (Ts Rs)

5.3 Correctness of final transformations
Correctness of both norm-t and norm-l is rather obvious due to
the simple nature of these transformations. But we still state the
correctness theorems to highlight the side conditions and progress
claims (the details of the proofs could be found in the code).

The progress lemma for norm-l states that after the transfor-
mation there are no rules with right-hand sides of more than two
symbols.

nl-progress : (Rs : Rules) → (A : N)
→ (rhs : RHS) → A −→ rhs ∈ norm-l Rs
→ length rhs ≤ 2

The progress lemma for norm-t states that, for any Rs for
all rules A −→ rhs ∈ norm-t Rs, either rhs ≡ [tm a] for
some terminal a or rhs consists of nonterminals only.

nt-progress : (Rs : Rules) → (A : N)
→ (rhs : RHS) → A −→ rhs ∈ norm-t Rs
→ ∃(a : T) rhs ≡ [tm a] ∨ ntOnly rhs

Next, nl-snd and nt-snd state that each tree for normalized
grammar that is rooted by some nonterminal present in the original
grammar can be transformed into a tree for the original grammar:

nl-snd : (Rs : Rules) → (A : N)
→ (s : String) → A ∈ NTs Rs
→ Tree (norm-l Rs) A s → Tree Rs A s

nt-snd : (Rs : Rules) → (A : N)
→ (s : String) → A ∈ NTs Rs
→ Tree (norm-t Rs) A s → Tree Rs A s

The side condition A ∈ NTs Rs is important, because a tree rooted
by some “freshly” added nonterminal has no corresponding tree in
the original grammar, where the fresh nonterminal is not present.

Conversely, any parse tree for Rs could be mapped to parse trees
for norm-l Rs and norm-t Rs.

nl-cmplt : (Rs : Rules) → (A : N) → (s : String)
→ Tree Rs A s → Tree (norm-l Rs) A s

nt-cmplt : (Rs : Rules) → (A : N) → (s : String)
→ Tree Rs A s → Tree (norm-t Rs) A s

6. Full normalization and correctness
6.1 Full normalization function
Finally, we are ready to define the full normalization function:

norm : Rules → Rules
norm = norm-u ◦ norm-e ◦ norm-t ◦ norm-l

The function norm is a composition of the four transformations
we have introduced. The order in which these transformations are
chained matters. For example, norm-e can add new unit rules, so
norm-u must be performed after norm-e.

Progress The question of progress of norm boils down to the
questions about preservation of the progress properties of individ-
ual constituent transformations by those transformations that fol-
low:

1. Since norm-t never increases the length of the right-hand side
of any rule, norm-t preserves the progress made by norm-l.
We prove that, if the right hand side of every rule in Rs is
shorter that some n : N, then the same holds for all rules in
norm-t Rs:

nt-efct : (Rs : Rules) → (n : N)
→ ((A : N) → (rhs : RHS)

→ A −→ rhs ∈ Rs
→ length rhs ≤ n)

→ (A : N) → (rhs : RHS)
→ A −→ rhs ∈ norm-t Rs
→ length rhs ≤ n

2. We show that, if A −→ rhs ∈ norm-e Rs, then rhs must
be a subsequence of some rhs’ such that A −→ rhs’ ∈ Rs.
Since the progress properties of norm-l and norm-t are closed
under the subsequence relation, norm-e preserves the progress
achieved by norm-l and norm-t:

ne-efct : (Rs : Rules) → (A : N) → (rhs : RHS)
→ A −→ rhs ∈ norm-e Rs → A −→ rhs /∈ Rs
→ ∃(rhs’ : RHS) A −→ rhs’ ∈ Rs ×

rhs ∈ allSubSeq (∈ nullables Rs) rhs’

3. Since norm-u does not introduce any new right-hand sides into
a grammar, it preserves the progress properties of all other
transformations. Formally, we prove that, if there is some pred-
icate that holds for all RHSs in the grammar Rs, then it will also
hold for all RHSs in the grammar norm-u:

nu-efct : (P : RHS → Set) → (Rs : Rules)
→ ((A : N) → (rhs : RHS)

→ A −→ rhs ∈ Rs → P rhs)
→ (A : N) → (rhs : RHS)
→ A −→ rhs ∈ norm-u Rs
→ P rhs

Finally, we show the following progress property of norm:

norm-progress : (Rs : Rules) → (A : N)
→ (rhs : RHS) → A −→ rhs ∈ norm Rs
→ (∃(B C : N) rhs ≡ [nt B, nt C]) ∨

(∃(a : T) rhs ≡ [tm a])

It states that, for any rule A −→ rhs ∈ norm Rs, either
rhs ≡ [nt B, nt C] for some nonterminals B and C or
rhs ≡ [tm a] for some terminal a.

Soundness To show soundness of norm, we only need to chain
the soundness results of the individual transformations:

norm-snd : (Rs : Rules) → (A : N)
→ (s : String) → A ∈ NTs Rs
→ Tree (norm Rs) A s → Tree Rs A s

Completeness As in the case of soundness, completeness of norm
is proved by chaining the completeness results of the small trans-
formations:

norm-cmplt : (Rs : Rules) → (A : N)
→ (s : String) → s 6≡ []
→ Tree Rs A s → Tree (norm Rs) A s

6.2 Grammars with a start nonterminal
Now, we define a context-free grammar as a set of rules with a fixed
start nonterminal:

record Grammar : Set where
field

S : N
Rs : Rules

(Given some G : Grammar, we write S G and Rs G for projections
of the start terminal and the list of rules respectively.)

Next, the language of the grammar G is defined as:

TreeS : Grammar → String → Set
TreeS G s = Tree (Rs G) (S G) s

Next, we implement normalization of context-free grammars:

normS : Grammar → Grammar
normS G = record {

S = S’;
Rs = if S G ∈ nullables (Rs G)

then S’ −→ [] :: Rs’
else Rs’

}
where

S’ = newnt (Rs G)
Rs’ = norm ((S’ −→ [nt (S G)]) :: Rs G)

To normalize a context-free grammar we have the following algo-
rithm:

1. Declare newnt (Rs G) as a new starting nonterminal.

2. Normalize the set of rules Rs G extended by the rule
newnt (Rs G) −→ [nt (S G)]. Since newnt (Rs G)
is fresh, it is clear that its language is same as the language of
nonterminal S G and it will not affect the language of any other
nonterminal (this step guarantees that new starting nonterminal
does not appear on the right hand sides of the rules).

3. Finally, if the starting nonterminal of the original grammar
was nullable then add the rule newnt (Rs G) −→ [] to the
normalized set of rules to retain the empty string in the language
of normalized grammar. Intuitively, it is safe to do so, because
new (Rs G) does not appear in the right-hand sides of the other
rules.

Let us look at the final versions of progress, soundness and
completeness properties:

Progress

normS-progress : (G : Grammar) → (A : N)
→ (rhs : RHS)
→ let G’ = normS G in A −→ rhs ∈ Rs G’
→ (∃(B C : N) rhs ≡ [nt B, nt C]

× B 6≡ S G’
× C 6≡ S G’) ∨

(∃(a : T) rhs ≡ [tm a]) ∨
(rhs ≡ [] × A ≡ S G’)

For any rule A −→ rhs ∈ Rs (normS G), the right-hand side
rhs is either [nt B, nt C] for some nonterminals B and C
where neither B nor C are starting nonterminals or [tm a] for
some terminal a, or [] with the condition that A ≡ S (normS G).

Soundness and completeness

normS-snd : (G : Grammar) → (s : String)
→ S G ∈ NTs (Rs G)
→ TreeS (normS G) s → TreeS G s

normS-cmplt : (G : Grammar) → (s : String)
→ TreeS G s → TreeS (normS G) s

If a given grammar is well-formed (i.e., the start nonterminal actu-
ally appears in the given list of rules), then normalization preserves
the language of the grammar.

7. Related Work and Conclusions
While a number of authors have formalized various parts of the
theory of regular grammars or expressions and finite automata,
efforts in the direction of context-free grammars seem fewer.

Several authors have considered parsing of context-free gram-
mars. Barthwal and Norrish [6] formalized SLR parsing with the
HOL4 theorem prover. Ridge [10] has formalized the correctness
of a general CFG parser constructor in HOL4.

Koprowski and Binsztok [4] have formalized parsing expression
grammars (PEGs), a formalism for specifying recursive descent
parses, in Coq. Jourdan, Pottier and Leroy [7] have presented a
validator that checks if a context-free grammar and an LR(1) parser
agree; they have proved the validator correct in Coq.

Danielsson [2] has implemented a library of parser combinators
in Agda treating left recursion with coinduction. Sjöblom [11] has
formalized an aspect of Valiant’s parsing algorithm.

Regarding normalization of context-free grammars, Barthwal
and Norrish [5] described a formalisation of the Chomsky and
Greibach normal forms for context-free grammars with the HOL4
theorem prover. They showed how to solve the problems which
arise from mechanising the straightforward pen and paper proofs.
The non-constructive setting gave the advantage of the power of ex-
tensional and classical reasoning, but also the significant drawback
that it did not deliver actual functions for normalizing grammars or
converting parse trees between grammars.

We have proved in Agda that a general CFG and its Chomsky
normal form accept the same language. As a program, the proof
consists of functions for conversion of parse trees between the orig-
inal and normalized grammars. This is a typical added benefit of
formalization in a language like Agda; e.g., a proof that a CFG and
the corresponding pushdown automaton accept the same language
would give functions for conversion between parse trees and ac-
cepting runs.

Combined with the CYK parser we have written previously [3],
the code of this paper gives us a parser for CFGs in general form.
There is, however, a caveat: we do not get all parse trees of the
grammar; moreover, it is not entirely obvious which parse trees we
get and which are lost.

To make this precise, we plan to extend this work as follows.
Instead of unnamed rules (a rule is identified by the left-hand non-
terminal and the right-hand list of symbols), we name rules. This
gives us finer control over parse trees. Now we expect that the con-
version of a parse tree in the normalized grammar to the original
grammar and back again will be identity while the conversion of a
parse of the original grammar to the normalized grammar and back
will be an idempotent function—a kind of normalizer of parse trees
that truncates nullable paths and removes unit cycles. Normaliza-
tion of parse trees by passing through the normalized grammar can
then be seen as a form of normalization-by-evaluation.

Overall, the constructive approach allows one to give parse trees
a first-class status: knowing that a string is in a language includes
knowing a proof of this, i.e., a parse tree. These proofs become
objects of analysis and manipulation.

Acknowledgement We thank our anonymous referees for the use-
ful feedback. This research was supported by the ERDF funded
Estonian CoE project EXCS and the Estonian Research coun-
cil target-financed research theme No. 0140007s12 and grant
No. 9475.

References
[1] J. E. Hopcroft, J. D. Ullman. Introduction to Automata Theory,

Languages and Computation. Addison-Wesley, 1979.
[2] N. A. Danielsson. Total parser combinators. In Proc. of 15th ACM

SIGPLAN Int. Conf. on Functional Programming, ICFP ’10, pp. 285–
296. ACM, 2010.

[3] D. Firsov, T. Uustalu. Certified CYK parsing of context-free lan-
guages. J. of Log. and Algebr. Meth. in Program., v. 83(5–6), pp. 459–
468, 2014.

[4] A. Koprowski, H. Binsztok. TRX: A formally verified parser inter-
preter. Log. Meth. in Comput. Sci., v. 7(2), article 18, 2011.

[5] A. Barthwal, M. Norrish. A formalisation of the normal forms of
context-free grammars in HOL4. In A. Dawar, H. Veith, eds., Proc.
of 24th Int. Wksh. on Computer Science Logic, CSL 2010, v. 6247 of
Lect. Notes in Comput. Sci., pp. 95–109. Springer, 2010.

[6] A. Barthwal, M. Norrish. Verified, executable parsing. In G. Castagna,
ed., Proc. of 18th Europ. Symp. on Programming, ESOP 2009, v. 5502
of Lect. Notes in Comput. Sci., pp. 160–174. Springer, 2009.

[7] J.-H. Jourdan, F. Pottier, X. Leroy. Validating LR(1) parsers.
In H. Seidl, ed., Proc. of 21st Europ. Symp. on Programming,
ESOP 2012, v. 7211 of Lect. Notes in Comput. Sci., pp. 397–416.
Springer, 2012.

[8] Y. Minamide. Verified decision procedures on context-free grammars.
In K. Schneider, J. Brandt, eds., Proc. of 20th Int. Conf. on Theorem
Proving in Higher Order Logics, TPHOLS 2007, v. 4732 of Lect. Notes
in Comput. Sci., pp. 173–188. Springer, 2007.

[9] U. Norell. Dependently typed programming in Agda. In P. Koopman,
R. Plasmeijer, S. D. Swierstra, eds., Revised Lectures from 6th Int.
School on Advanced Functional Programming, AFP 2008, v. 5832 of
Lect. Notes in Comput. Sci., pp. 230–266. Springer, 2009.

[10] T. Ridge. Simple, functional, sound and complete parsing for all
context-free grammars. In J.-P. Jouannaud, Z. Shao, eds., Proc. of
1st Int. Conf. on Certified Programs and Proofs, CPP 2011, v. 7086 of
Lect. Notes in Comput. Sci., pp. 103–118. Springer, 2011.

[11] T. B. Sjöblom. An Agda proof of the correctness of Valiant’s algo-
rithm for context free parsing. Master’s thesis, Dept. of Computer Sci.
and Engin., Chalmers University of Technology, 2013.

	Introduction
	Setup
	-rule elimination and its correctness
	Nullable nonterminals
	Subsequences
	-rule elimination
	Correctness
	Example

	Unit rule elimination and its correctness
	Implementation
	Correctness
	Example

	Final transformations
	Long right-hand sides
	Right-hand sides containing terminals
	Correctness of final transformations

	Full normalization and correctness
	Full normalization function
	Grammars with a start nonterminal

	Related Work and Conclusions

