
Certified Parsing of Regular Languages

Denis Firsov and Tarmo Uustalu

Institute of Cybernetics, Tallinn University of Technology
Akadeemia tee 21, 12618 Tallinn, Estonia

{denis,tarmo}@cs.ioc.ee

Abstract. We report on a certified parser generator for regular languages
using the Agda programming language. Specifically, we programmed a
transformation of regular expressions into a Boolean-matrix based repre-
sentation of nondeterministic finite automata (NFAs). And we proved (in
Agda) that a string matches a regular expression if and only if the NFA
accepts it. The proof of the if-part is effectively a function turning accep-
tance of a string into a parse tree while the only-if part gives a function
turning rejection into a proof of impossibility of a parse tree.

1 Introduction

Parsing is the process of structuring a linear representation (sentence, a com-
puter program, etc.) in accordance with a given grammar. Parsers are proce-
dures which perform parsing. They are being used extensively in a number of
disciplines: in computer science (for compiler construction, database interfaces,
artificial intelligence), in linguistics (for text analysis, corpora analysis, machine
translation, textual analysis of biblical texts), in typesetting chemical formulae,
in chromosome recognition, and so on [4]. It is therefore clear that having cor-
rect parsers is important for all these disciplines. Surprisingly, relatively little
research had been done in field of certified parsing.

However, with the recent development of programming languages with depen-
dent types it has become possible to encode useful invariants in the types and
prove properties of a program while implementing it. In this paper we use the
system of dependent types of the Agda language [8], which is based on Martin-
Löf’s type theory. One of the basic ideas behind Martin-Löf’s type theory is the
Curry-Howard interpretation of propositions as types. A proposition is proved
by writing a program of the corresponding type.

Dependent types allow types to talk about values. A classical example of a
dependent type is the type of lists of a given length: Vec A n. Here A is the type
of the elements and n is the length of the list. Having such a definition of vector,
we can define “safe” functions. Let us look at definition of a safe head function:

head : ∀ {A n} → Vec A (suc n) → A
head (x :: xs) = x

This definition says that the function head accepts only vectors with at least one
element. So, it is now the responsibility of the programmer to provide non-empty
vectors, otherwise compilation will fail.

G. Gonthier and M. Norrish (Eds.): CPP 2013, LNCS 8307, pp. 98–113, 2013.
c© Springer International Publishing Switzerland 2013

Certified Parsing of Regular Languages 99

In this paper, we have adopted the same general technique of expressing prop-
erties of data in their types to implement a library of matrix operations, program
a transformation of regular expressions into a Boolean matrix based represen-
tation of nondeterministic finite automata (NFAs) and prove it correct. The
correctness proof turns NFAs effectively into parsers: the proof of acceptance or
rejection of a string gives us a parse tree (a witness of matching) or a proof of
impossibility of one.

Our Agda development can be found online at http://cs.ioc.ee/˜denis/
cert-reg .

2 Regular Expressions

Before we start, let us take care of the alphabet (Σ) of our interest. Since many
functions require Σ as a parameter and an NFA must share its alphabet with
the regular expressions, we define Σ as a global parameter for each module of
the parser-generator library.

module ModuleName (Σ : Set) (_ ?=_ : Decidable (_≡_ {A = Σ}))
It states that the module is parametrized by an alphabet and also a decidable
equality on the alphabet.

The datatype for regular expressions is called RegExp and is defined as

data RegExp : Set where
ε : RegExp
′_ : Σ→ RegExp
∪ : RegExp → RegExp → RegExp
· : RegExp → RegExp → RegExp
_+ : RegExp → RegExp

The base cases are regular expressions for the empty string (ε) and for single-
character strings (′_). The step cases are given by the regular operations: _∪_
for union, _·_ for concatenation and _+ for iteration at least once. Note that
instead of the Kleene star (_*) we use plus (_+). This is more convenient for
us and does not restrict generality, as star is expressible as choice between the
empty string and plus.

Now, we need to specify when a string (an element of type List Σ) is in the
language of the regular expression, which is also called matching. This is done
by introducing a parsing (or matching) relation (denoted by _�_) between
strings and regular expressions.

String : Set
String = List Σ
data _�_ : String → RegExp → Set where

empt : [] � ε
symb : {x : Σ} → [x] � ′ x
unionl : {u : String} {e1 e2 : RegExp} → u � e1 → u � e1 ∪ e2

unionr : {u : String} {e1 e2 : RegExp} → u � e2 → u � e1 ∪ e2

http://cs.ioc.ee/~{}denis/cert-reg
http://cs.ioc.ee/~{}denis/cert-reg

100 D. Firsov and T. Uustalu

con : {u v : String} {e1 e2 : RegExp} → u � e1 → v � e2

→ u ++ v � e1 · e2

plus1 : {u : String} {e : RegExp} → u � e → u � e+

plus2 : {u v : String} {e : RegExp}
→ u � e → v � e+ → u ++ v � e+

(Arguments enclosed in curly braces are implicit. The type checker will try to
figure out the argument value for you. If the type checker cannot infer an implicit
argument, then it must be provided explicitly, e.g., symb {x}.)

Let us now examine the constructors of the relation _�_:

1. The constructor empt states that the empty string is in the language of the
regular expression ε.

2. The constructor symb states that the string consisting of a single character x
is in the language of the regular expression ′ x.

3. The constructor unionl (unionr) states that if a string u is in the language
defined by e1 (e2), then u is also in the language of e1 ∪ e2 for any e2 (e1).

4. The constructor con states that if a string u is in the language e1 and a
string v is in the language of e2 then the concatenation of both strings is in
the language of e1 · e2.

5. The constructor plus1 states that if a string u is in the language of e, then
it is also in the language of e+.

6. The constructor plus2 states that if a string u is in the language of e and a
string v is in the language of e+, then concatenation of both strings is in the
language of e+.

Note that a proof that a string is in the parsing relation with a regular ex-
pression is a parse tree. Note that we do not introduce any notion of “raw” parse
trees, a parse tree is always a parse tree of a specific string.

3 A Matrix Library

The transition relation of a nondeterministic finite automaton (NFA) can be
viewed as a labeled directed graph. So it can be expressed as a family of incidence
matrices (one matrix per label). In addition to the nice algebraic properties
that this approach highlights, it allows us to compose automata (expressed with
matrices) in various ways by using block operations.

We therefore formalize matrices and some important matrix operations and
their properties.

3.1 Matrices and Matrix Operations

What sort of elements can a matrix contain? Our approach abstracts from the
type of elements. But in order for matrix addition and multiplication to be
well-defined and satisfy the standard properties, it must form a commutative
semiring. In Agda we introduce a parametrized module

Certified Parsing of Regular Languages 101

module Data.Matrix (sr : CommSemiRing)

This declaration says that the module Data.Matrix is parametrized by a commu-
tative semiring sr. A semiring will be a record containing the carrier type R, the
operations, and the proofs of the laws of the semiring.

Next we define a representation for matrices. A matrix is a vector of vectors,
therefore the matrix type can be defined as

× : N → N → Set
k × l = Vec (Vec R l) k

where k denotes the number of rows and l the number of columns in a matrix.
Let us implement some of the most important operations on matrices:

Null Matrix. The zero or null matrix is a matrix with all entries zero.

null : {k l : N} → k × l
null = replicate (replicate zero)

Here zero is the additive identity element of the semiring. Note that the
arguments k and l are implicit (enclosed in curly braces), so in the most
cases we can omit them and the type checker will try to infer their values
automatically.

Identity Matrix. The identity or unit matrix of size k is the k × k square
matrix with ones on the main diagonal and zeros elsewhere.

id : {k : N} → k × k
id {0} = []
id {suc k} = (one :: replicate zero) :: zipWith _++_ null (id {k})

Here one is the multiplicative identity element.
Addition. Matrix addition is the operation of adding two matrices by adding

corresponding entries together.

⊕ : {k l : N} → k × l → k × l → k × l
⊕ [] [] = []
⊕ (rowA :: A′) (rowB :: B′) = zipWith _+_ rowA rowB :: A′ ⊕ B′

Note, that signature of addition requires the dimensions of the two input
matrices to be equal.

Transposition. The transpose of a matrix A is another matrix 〈 A 〉 (or AT in
mathematical notation) created by writing the rows of A as the columns of
〈 A 〉.

〈_〉 : {k l : N} → k × l → l × k
〈 [] 〉 = replicate []
〈 rowA :: A′ 〉 = zipWith _::_ rowA 〈 A′ 〉

Multiplication. Matrix multiplication is a binary operation that takes a pair
of matrices and produces another matrix. If A is an k × l matrix and B is
an l × m matrix, the result A ⊗ B of their multiplication is an k × m matrix

102 D. Firsov and T. Uustalu

defined only if the number l of columns of the first matrix A is equal to the
number of rows of the second matrix B.

⊗ : {k l m : N} → k × l → l × m → k × m
⊗ [] = []
⊗ (rowA :: A′) B = multRow :: A′ � B

where
multRow = map

(λ colB → (foldr (_+_) zero (zipWith (_*_) rowA colB))) 〈 B 〉
The result of matrix multiplication is a matrix whose elements are found by
multiplying the elements within a row from the first matrix by the associated
elements within a column from the second matrix and summing the products.

In our library we have proved a number of basic properties of matrix trans-
position, addition, multiplication.

3.2 Block Operations

How to create matrices from smaller matrices systematically? This section de-
scribes an approach to block operations on matrices that has been advocated
by Macedo and Oliveira [6]. It is centered around four operations corresponding
to the injections and projections of the biproducts on the category of natural
numbers and matrices.

1. ι1 : {k l : N} → (k + l) × k
ι1 = id ++ null

2. ι2 : {k l : N} → (k + l) × l
ι2 = null ++ id

3. π1 : {k l : N} → k × (k + l)
π1 = zipWith _++_ id null

4. π2 : {k l : N} → l × (k + l)
π2 = zipWith _++_ null id

Example 1. Let us show some instances of these operations:

ι1{3}{1} =

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎥⎦ ι2{2}{2} =

⎡
⎢⎢⎣
0 0
0 0
1 0
0 1

⎤
⎥⎥⎦

π1{3}{1} =

⎡
⎣

1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎦ π2{2}{2} =

[
1 0 0 0
0 1 0 0

]

The main block operations are now defined as follows:

Concatenation (copairing) is the operation of placing two matrices next to
each other.

[_|_] : {k l m : N} → k × l → k × m → k × (l + m)
[A | B] = A ⊗ π1 ⊕ B ⊗ π2

Certified Parsing of Regular Languages 103

Stacking (pairing) is the operation of placing two matrices on top of each other.

[_/_] : {k l m : N} → k × m → l × m → (k + l) × m
[A / B] = ι1 ⊗ A ⊕ ι2 ⊗ B

Example 2. Let A =
[
1 2
3 4

]
and B =

[
5 6
7 8

]
. Then

[A | B] =
[
1 2 5 6
3 4 7 8

]
and [A / B] =

⎡
⎢⎢⎣

1 2
3 4
5 6
7 8

⎤
⎥⎥⎦

3.3 Properties of Block Operations

The main advantage of working with injections and projections is that they
structure proofs about block operations. Next, we list some properties of block
operations.

– Multiplying the concatenation of A and B by ι1 (ι2) yields A (B).

m1m2-con-ι1 : {k l m : N} (A : k × l) (B : k × m)
→ [A | B] ⊗ (ι1 { l} {m}) ≡ A

m1m2-con-ι2 : {k l m : N} (A : k × l) (B : k × m)
→ [A | B] ⊗ (ι2 { l} {m}) ≡ B

– Multiplying π1 (π2) by the stacking of A and B gives A (B).

π1-m1m2-stack : {k l m : N} (A : k × l) (B : m × l)
→ π1 {k} {m} ⊗ [A / B] ≡ A
π2-m1m2-stack : {k l m : N} (A : k × l) (B : m × l)
→ π2 {k} {m} ⊗ [A / B] ≡ B

– The product of C and the concatenation of A and B is equal to the concate-
nation of C ⊗ A and C ⊗ B.

distrib-lft : {k l m n : N} (A : k × l) (B : k × m) (C : n × k)
→ C ⊗ [A | B] ≡ [C ⊗ A | C ⊗ B]

– The product of a stacking reduces to a stacking of products.

distrib-rgt : {k l m n : N} (A : k × l) (B : m × l) (C : l × n)
→ [A / B] ⊗ C ≡ [A ⊗ C / B ⊗ C]

– Multiplying the concatenation of A and B by the stacking of C and D yields
the sum of A ⊗ C and B ⊗ D.

con-⊗-stack : {k l m n : N} (A : k × l) (B : k × m)
→ (C : l × n) → (D : m × n)
→ [A | B] ⊗ [C / D] ≡ A ⊗ C ⊕ B ⊗ D

104 D. Firsov and T. Uustalu

4 NFAs and Parsing with NFAs

We are now in the position to implement a parser generator for regular languages.
We parse strings with nondeterministic finite automata and represent them in
terms of Boolean matrices.

From now on we therefore use matrices over the commutative semiring of
Booleans, with false as zero, disjunction as addition, true as one, conjunction as
multiplication.

4.1 Nondeterministic Finite Automata

A Σ-NFA can be defined as a record with four fields.

record NFA : Set where
field ∇ : N

δ : Σ→ ∇ × ∇
I : 1 × ∇
F : ∇ × 1

– ∇ is the size of the state space. We do not name states. Instead we identify
them with positions in rows and columns of matrices.

– δ specifies the transition function. In our implementation δ is a total function
from letters of the alphabet to incidence matrices such that for any x : Σ
the function call δ x will return an incidence matrix D of size ∇ × ∇ where
Dij = 1 iff qj is a successor of qi for character x.

– I specifies the set of initial states. The initial states can be represented by a
1 × ∇ matrix (row vector) where the element I1i is 1 iff qi is an initial state.

– F specifies the set of final states. The final states can be represented by a
∇ × 1 matrix (column vector) where the element Fi1 is 1 iff qi is a final state.

4.2 Running an NFA

Running an NFA on the string x0 . . . xn from a set of states X represented by a
row vector can be implemented as the series of multiplications
X ⊗ δ nfa x0 ⊗ ... ⊗ δ nfa xn. This computes the row vector of all states
reachable from the states X by following the transitions corresponding to the
individual letters of the string x0 . . . xn.

run : (nfa : NFA) → String → 1 × ∇ nfa → 1 × ∇ nfa
run nfa u X = foldl (λ A x → A ⊗ δ nfa x) X u

If we take X to be I and multiply the matrix further with the column vector
F of the final states, we get the 1 × 1 matrix id {1} (i.e. [[true]]), if there is an
overlap between the states reachable from some initial state and the final states,
i.e., if the string is accepted, and null (i.e. [[false]]) otherwise.

runNFA : NFA → String → 1 × 1
runNFA nfa u = (run nfa u (I nfa)) ⊗ F nfa

Certified Parsing of Regular Languages 105

4.3 Converting Regular Expressions to NFAs (Parsers)

We have introduced and defined the types RegExp and NFA. We now implement
a conversion from RegExp to NFA, which we will use as a parser generator.

reg2nfa : RegExp → NFA
reg2nfa ε = ε′

reg2nfa (′ a) = ′′ a
reg2nfa (e1 ∪ e2) = (reg2nfa e1) ∪′ (reg2nfa e2)
reg2nfa (e+) = (reg2nfa e) +′

reg2nfa (e1 · e2) = (reg2nfa e1) ·′ (reg2nfa e2)

This function recurses over the regular expression and replaces every construc-
tor with a corresponding operation on NFAs. We describe each case:
– e = ε:

ε′ = record {
∇ = 1 ;
δ = λ x → null;
I = id;
F = id}

Clearly, an NFA that accepts only the empty string can be given by one
state 0 that is both initial and final.

– e = ′ a:
In this case, the regular expression describes the single-character string a.
So, the corresponding NFA should accept only this string.

′′ a = record {
∇ = 2;
δ = λ x → if a ?= x then [[null | id {1}] /

[null | null]]
else null;

I = [id {1} | null];
F = [null / id {1}]}

This NFA has two states 0 and 1 such that 0 is an initial and 1 a final state.
The transition function compares the character x with the expected character
a. If they coincide, then it returns the incidence matrix for the graph with a
single edge from 0 to 1, otherwise, the null matrix for the empty graph.

– e = e1 ∪ e2:
Recall that strings of both languages must be accepted. So we must run both
NFAs.

nfa1 ∪′ nfa2 = record {
∇ = ∇ nfa1 + ∇ nfa2;
δ = λ x → [[δ nfa1 x | null] /

[null | δ nfa2 x]];
I = [I nfa1 | I nfa2];
F = [F nfa1 / F nfa2]}

106 D. Firsov and T. Uustalu

The resulting NFA is built of nfa1 and nfa2 as follows:
(∇) The state space of the resulting NFA must contain states from nfa1 and

nfa2. So ∇ = ∇ nfa1 + ∇ nfa2.
(δ) The transition function of the resulting NFA is composed of four blocks.

1. The top left block is the incidence matrix of the first NFA.
2. The top right block is null. So, no transitions from nfa1 to nfa2.
3. The bottom left block is null. In terms of incidence matrices this

signals that there are no transitions from nfa2 to nfa1.
4. The bottom right block is the incidence matrix of the second NFA.

(I) The set of initial states in the resulting NFA is the union of the sets of
initial states of nfa1 and nfa2.

(F) The set of final states in the resulting NFA is the union of the sets of
final states of nfa1 and nfa2.

– e = e′+:

nfa+′ = record {
∇ = ∇ nfa;
δ = λ x → (id ⊕ F nfa ⊗ I nfa) ⊗ (δ nfa x)
I = I nfa;
F = F nfa}

The difference between nfa+′ and nfa is in δ only. Specifically, we add a new
edge from each final state to each successor of an initial state. This is achieved
by F nfa ⊗ I nfa ⊗ δ nfa x, where I nfa ⊗ δ nfa x stands for edges reachable
from initial state by reading the token x. And F nfa ⊗ I nfa ⊗ δ nfa x puts
an edge from each final state to each successor of an initial state.

– e = e1 · e2:

nfa1 ·′ nfa2 = record {
∇ = ∇ nfa1 + ∇ nfa2;
δ = λ x → [[δ nfa1 x | F nfa1 ⊗ I nfa2 ⊗ δ nfa2 x] /

[null | δ nfa2 x]];
I = [I nfa1 | null];
F = [F nfa1 ⊗ I nfa2 ⊗ F nfa2 / F nfa2]}

The fields of nfa1 and nfa2 are combined in the following way:
(∇) The state space of the resulting NFA consists of the disjoint union of

state spaces of nfa1 and nfa2, i.e. ∇ = ∇ nfa1 + ∇ nfa2.
(δ) The transition function constructs incidence matrices from four blocks.

1. The top left block contains the incidence matrix of nfa1. Hence, the
transition relation between the states of nfa1 is not changed.

2. The top right block is F nfa1 ⊗ I nfa2 ⊗ δ nfa2 x. This expression
constructs an incidence matrix with transitions from all final states
of nfa1 to all successors of initial states in nfa2. In other words, it
says that upon reaching a final state of nfa1, it is time to transition
to nfa2.

3. The bottom left block is null. Hence, there are no transitions from
nfa2 back to nfa1.

Certified Parsing of Regular Languages 107

4. The bottom right block consists of the transition function of nfa2.
So, the transitions between the states of nfa2 are unchanged.

(I) The resulting NFA’s initial states must contain only initial states of nfa1.
(F) Clearly, the final states of the resulting NFA must contain all final states

of the second NFA. But what if the second NFA accepts the empty string?
Then the resulting NFA must also accept the language of the first NFA,
hence, contain all its final states. The desired behaviour is achieved by

F = [F nfa1 ⊗ I nfa2 ⊗ F nfa2 / F nfa2]

The top block of this column vector is equal to either the empty vector
or F nfa1 depending on the result of I nfa2 ⊗ F nfa2. The latter multi-
plication is equal to id {1}, if nfa2 accepts the empty string, and null,
if it does not. The bottom block of F is always equal to F nfa2. So, the
desired behaviour is achieved.

4.4 Correctness

The correctness of an NFA with respect to a regular expression consists of com-
pleteness and soundness. Completeness guarantees that every string matching a
regular expression will be accepted by the NFA. However, completeness alone
is not enough, since an NFA accepting all strings is also complete. Soundness
in turn guarantees that, if the NFA accepts, the string matches the regular ex-
pression. Similarly to the case of completeness, soundness is not sufficient alone,
because an NFA rejecting every string is sound.

Completeness. Completeness states that, if a string is matched by the given
regular expression, then the constructed NFA reg2nfa e accepts it.

complete : (e : RegExp) → (u : String) → u � e
→ runNFA (reg2nfa e) u ≡ id {1}

We prove this theorem by induction on the proof of u � e. Hence, all shapes
of parse trees must be considered. We describe only the cases for union and
concatenation, the others can be found in the Agda code.

Union In this case e = e1 ∪ e2.

complete (e1 ∪ e2) u parseTree = . . .

We start with pattern matching on parseTree.

complete (e1 ∪ e2) u (unionl parseTree′) = . . .
complete (e1 ∪ e2) u (unionr parseTree′) = . . .

This yields two cases for the last rule used in the parse tree: unionl or unionr.
Since both cases are proved in the same way, we describe only the first one.

The main idea is to show that a run of nfa1 ∪′ nfa2 can be split into runs of
nfa1 and nfa2. It is proved by the lemma union-split:

108 D. Firsov and T. Uustalu

union-split : (nfa1 nfa2 : NFA) (u : String) (X1 : 1 ×) (X2 : 1 ×)
→ run (nfa1 ∪′ nfa2) s [X1 | X2] ≡ [run nfa1 s X1 | run nfa2 s X2]

Next, by using the previously described property

con-⊗-stack : {k l m n : N} (A : k × l) (B : k × m) (C : l × n) (D : m × n)
→ [A | B] ⊗ [C / D] ≡ A ⊗ C ⊕ B ⊗ D

we complete the proof:

id {1} ⊕ id {1} ≡ id {1} Boolean arithm.

(run nfa1 s X1 ⊗ (F nfa1)) ⊕ (run nfa2 s X2 ⊗ (F nfa2)) ≡ id {1} IHs

[run nfa1 s X1 | run nfa2 s X2] ⊗ [F nfa1 / F nfa2] ≡ id {1} con-⊗-stack

run (nfa1 ∪′ nfa2) s [X1 | X2] ⊗ [F nfa1 / F nfa2] ≡ id {1} union-split

Plus In this case e = e′+.

complete (e′+) u parseTree = . . .

Pattern matching on parseTree yields two cases. We examine them in turn:

1. In the first case the last rule of the parse tree is plus1.

complete (e′+) u (plus1 parseTree′) = . . .

Recall that plus1 is a constructor which states that, if u is in language of e′,
then it is also in language of (e′+). Hence, the main lemma for this case can
be stated as

plus-weak : (nfa : NFA) (u : String) (X : 1 × (∇ nfa))
→ run nfa u X ⊗ F nfa ≡ id {1}
→ run (nfa+′) u X ⊗ F nfa ≡ id {1}

It is proved by induction on the length of the string u.
2. In the second case the last rule of the parse tree is plus2.

complete (e′+) . (u1 ++ u2) (plus2 {u1} {u2} tree1 tree2) = . . .

Note that string u is now split into u1 and u2 such that u1 is in the language
of e′ and u2 is in the language of e′+. We must prove that u1 ++ u2 are in
the language of e′+. To do so, we first introduce some useful lemmas.
– We show that run on u1 ++ u2 can be split into a run on u1 and a run

on u2.

plus-split : (nfa : NFA) (u1 u2 : String)
→ run (nfa+′) (u1 ++ u2) (I nfa) ⊗ F nfa
≡ run (nfa+′) u2 (run (nfa+′) u1 (I nfa)) ⊗ F nfa

– We also show that, if the automaton nfa+′ accepts a string from the
initial states, then it will also accept that string from any final state.

plus-fin : (nfa : NFA) (u : String) (X : 1 × ∇ nfa)
→ run (nfa+′) u (I nfa) ⊗ F nfa ≡ id {1}
→ X ⊗ F nfa ≡ id {1}
→ run (nfa+′) u X ⊗ F nfa ≡ id {1}

Certified Parsing of Regular Languages 109

Finally, the big picture of the proof looks like this:

run (nfa+′) u2 (I nfa) ⊗ F nfa ≡ id {1} IH
run nfa u1 (I nfa) ⊗ F nfa ≡ id {1} IH

run (nfa+′) u1 (I nfa) ⊗ F nfa ≡ id {1}
plus-weak

run (nfa+′) u2 (run (nfa+′) u1 (I nfa)) ⊗ F nfa ≡ id {1}
plus-fin

run (nfa+′) (u1 ++ u2) (I nfa) ⊗ F nfa ≡ id {1}
plus-split

Soundness. Showing that our NFA generation is sound is more complicated,
but also more interesting. Let us look at the signature of the soundness theorem:

sound : (e : RegExp) → (u : String)
→ runNFA (reg2nfa e) u ≡ id {1} → u � e

It states that, if the NFA accepts a string, then it matches the regular expression.
sound is a proposition, but it is also a type! Its proof is a function that delivers
parse trees. We prove this theorem by induction on the argument e : RegExp.

As in case of completeness, our aim is to explain the high-level ideas of the
proof. We skip most of the details and describe only two cases.

Single character. This case is interesting because it demonstrates the essence
of all soundness cases. We are given an accepting run of the automaton. Using
this fact we must construct a parse tree. However, most of the cases generated
by pattern matching are discharged by showing that they contradict with the
accepting run we have at our disposal.

sound (′ a) u run = ...

We pattern match on the string u and examine three different cases in turns:

1. u is the empty string.

sound (′ a) u run = ...

We must show that in this case it is impossible to give run. We do so by
pattern matching on run and the rest is taken care of by Agda’s type checker.

2. u is a string of one symbol.

sound (′ a) (x :: []) run = ...

This is the only situation when the automaton can accept u. Still, we must
check if x is equal to a. We case analyse on the decidable equality of a and x:

sound (′ a) (x :: []) run with a ?= x
sound (′ a) (x :: []) | eq = ...
sound (′ a) (x :: []) | neq = ...

Then two cases must be discharged.
(a) x is equal to a.

This is exactly the case when the automaton finishes in the accepting
state. To close this case, we rewrite the context using a ≡ x and provide
the constructor symb {x} as the required proof.

110 D. Firsov and T. Uustalu

(b) x is not equal to a.
Then Agda computes that runNFA (reg2nfa (′ a)) [x] is equal to null, but
this contradicts the assumptions. Hence, the case is discharged.

3. u is a string of two or more characters.

sound (′ a) (x1 :: x2 :: xs) run = ...

Similarly to the first case, our goal is to show that runNFA (reg2nfa (′ a)) u
will never accept a string consisting of two or more characters. This is done
by observing the fact that, even if the automaton reaches the second state
by reading the first character, then by reading the second character the
automaton will lose all active states, since there are no transitions going
out of the second state. Hence, runNFA (reg2nfa (′ a)) (x1 :: x2 :: xs) cannot
return id {1}. Therefore, the case is discharged.

Concatenation. We are in the case

sound (e1 · e2) u run = ...

Fortunately, there is only one possible constructor for this case in the parsing
relation, namely con. It states that to prove u � e1 · e2 we must show that
u1 � e1 and u2 � e2 for some splitting of u into u1 and u2. Hence, we must
be able to extract from run two shorter runs and use them to get u1 � e1 and
u2 � e2 by induction hypothesis. To express this in Agda we use sigma-types,
corresponding to existentials.

cons-split : (nfa1 nfa2 : NFA) (u : String)
→ run (nfa1 ·′ nfa2) u [I nfa1 | null]

⊗ [F nfa1 ⊗ I nfa2 ⊗ F nfa2 / F nfa2] ≡ id {1}
→ ∃ [u1 : String] ∃ [u2 : String] u ≡ u1 ++ u2

∧ run nfa1 u1 (I nfa1) ⊗ F nfa1 ≡ id {1}
∧ run nfa2 u2 (I nfa2) ⊗ F nfa2 ≡ id {1}

Note that we split the string u into u1 and u2, but must also provide a proof
that u ≡ u1 ++ u2. To prove it, we will need a variant of cons-split.

cons-split-state : (nfa1 nfa2 : NFA) (x : Σ) (u : String) (X : 1 ×)
→ run (nfa1 ·′ nfa2) (x :: u) [X | null] ⊗ (null ++ F nfa2) ≡ id {1}
→ ∃ [u1 : String] ∃ [u2 : String] (x :: u) ≡ u1 ++ u2

∧ run nfa1 u1 X ⊗ F nfa1 ≡ id {1}
∧ run nfa2 u2 (I nfa2) ⊗ F nfa2 ≡ id {1}

The important differences between cons-split and cons-split-state are the
following:

– In cons-split, the given run starts from [I nfa1 | null], where I nfa1 is the set
of initial states of nfa1, but in cons-split-state, we use a more general variant
[X | null], where X is a given parameter.

– In cons-split, the run of the automaton can terminate either in the final states
of nfa1 or in the final states of nfa2, but in cons-split-state, the set of final
states is limited to those of nfa2.

Certified Parsing of Regular Languages 111

– In contrast with cons-split-state, the string xs can be empty in cons-split.

The restrictions present in cons-split-state force it to address the specific and most
complicated case when the given run starts in some states of nfa1, but terminates
in nfa2. The lemma states that in this case we can break an accepting run of
nfa1 ·′ nfa2 down into two smaller accepting runs.

We will not describe here how cons-split-state is proved. Instead we show
how to reduce cons-split to cons-split-state. To do so, we perform multiple case
analyses. First, we distinguish the empty string case from the cons-case.

1. If u ≡ [], then u1 ≡ [] and u2 ≡ [] and we must show that I nfa1 ⊗ F nfa1 ≡
id {1} and I nfa2 ⊗ F nfa2 ≡ id {1}. Both proofs are easily derived from the
given premise:

[I nfa1 | null] ⊗ [F nfa1 ⊗ (I nfa2 ⊗ F nfa2) / F nfa2] ≡ id {1}
2. If u ≡ x :: xs, then we perform an additional case analysis: whether the

second automaton has final states among its initial states:
(a) I nfa2 ⊗ F nfa2 ≡ null. In this case, the problem is clearly an instance of

cons-split-state.
(b) I nfa2 ⊗ F nfa2 ≡ id {1}. In this case, we perform a third level of case

analysis: whether the first automaton nfa1 accepts the whole string.
i. run nfa1 u (I nfa1) ⊗ F nfa1 ≡ id {1}.

If we take u1 ≡ u and u2 ≡ [], then case is immediately discharged.
ii. run nfa1 u (I nfa1) ⊗ F nfa1 ≡ null.

In this case, we need an additional lemma

consnd2 : (nfa1 nfa2 : NFA) (u : String)
→ (run nfa1 u (I nfa1)) ⊗ F nfa1 ≡ null
→ (run (nfa1 ·′ nfa2) u [I nfa1 | null]) ⊗ [F nfa1 / F nfa2]
≡ (run (nfa1 ·′ nfa2) u [I nfa1 | null]) ⊗ [null / F nfa2]

It states that, if the first automaton does not accept the whole string,
then running the automaton nfa1 ·′ nfa2 with the final states of
nfa1 is equivalent to running the automaton nfa1 ·′ nfa2 without the
final states of nfa1. So, this branch of cons-split is also reduced to
cons-split-state.

sound returns one parse tree. If there are multiple parse trees for a single string,
it prefers unionl over unionr and also plus1 over plus2. It also never invokes plus2
with the first string empty, as in this case no progress is made. In fact makes sense
to restrict the first string argument of plus2 to be a cons-string—this removes
the possibility for a string to have an infinite number of parse trees.

4.5 Parsing

Correctness of reg2nfa turns the NFA for a regular expression effectively into a
parser. Since we can decide whether a 1 × 1 matrix contains true or false, using
sound and complete, for any string we can have a parse tree or a proof of that
there cannot be one.

112 D. Firsov and T. Uustalu

parse : (e : RegExp) → (u : String) → u � e
 (u � e → ⊥)

5 Related Work

Braibant and Pous [1] implement a Coq tactic for deciding equational theory
of Kleene algebras. The work is based on checking if two regular expressions
represent the same language. This is done in four steps. First, regular expressions
are converted into ε-NFAs. Then ε-transitions are removed to get NFAs. Next,
determinisation procedure converts NFAs into DFAs. Finally, they check whether
the DFAs are equivalent. This results in a general decision procedure for Kleene
algebras. In principle, it can be used to solve the recognition problem: to check
whether a word w is in the language defined by a regular expression r, we can
check if w ∪ r and r define the same language. But as this requires go through
all four steps for each query, it is impractical.

In contrast, we focus only on the recognition problem. The main difference
of our work is that we convert regular expressions directly into NFAs without
ε-transitions. This makes the overall process simpler, since then we do not have
to find ε-closures and remove ε-transitions afterward and pepper all that, as
Braibant and Pous confirm, with quite tricky proofs of correctness.

Many works formalizing recognition of regular languages are based on the
concept of the derivative of a language [5,2,3,7]. This is not accidental, since
derivatives have nice algebraic properties which make them attractive for a for-
mal development.

It seems that the alternative approach of converting regular expressions to
finite automata is believed to be a messy procedure with too much low-level
detail involved. For instance, Krauss and Nipkow [5] discuss the link between
regular expressions and finite automata in the context of lexing, but point out
that encoding finite automata as graphs involves a painful amount of detail and
a higher-level approach is desirable.

Wu et al. [9] show how to formalize the Myhill-Nerode theorem by only using
regular expressions and the motivation behind this approach is again to avoid
the trouble of representing automata as graphs.

We have shown that conversion from regular expressions to finite state au-
tomata encoded as Boolean matrices can be done in a concise and high-level way
by using block operations on matrices. Proofs in this setting benefit significantly
from lemmas about block operations.

6 Conclusion

We presented an implementation of a certified parser generator for regular lan-
guages. In particular we showed how to reduce operations and proofs about NFAs
into linear-algebra operations and proofs. The practical part of this work was
divided into two parts. In the first part, we implemented a generic library for
matrices, focusing on block operations. Besides an implementation of basic ma-
trix operations, we also proved many well-known properties of these functions.

Certified Parsing of Regular Languages 113

In the second part of the practical work, we implemented a transformation of
regular expressions to NFAs and proved its correctness. A string is parsed by
checking whether the NFA accepts it, as soundness turns the positive answer
into a parse tree while completeness can be used to conclude impossibility of a
parse tree in the negative case.

This work could be continued in several directions. The implemented frame-
work (the matrix library, RegExp and NFA libraries) can be used to formalize
different aspects of regular language theory: minimizing NFAs, showing equiva-
lence of regular expressions, conversion of NFAs to regular expressions, etc.

One variation on the theme of this work would be to consider matrices over
natural numbers instead of Booleans. This would allow counting of accepting
runs of an NFA (paths from an initial to a final state). Soundness and com-
pleteness of the transformation of regular expressions to NFAs would establish
a bijection between the parse trees of a given string and the accepting runs of
the NFA.

Acknowledgements. This work was supported by the ERDF funded CoE
project EXCS, the Estonian Ministry of Education and Research target-financed
theme no. 0140007s12 and the Estonian Science Foundation grant no. 9475.

References

1. Braibant, T., Pous, D.: An efficient Coq tactic for deciding Kleene algebras. In: Kauf-
mann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 163–178. Springer,
Heidelberg (2010)

2. Coquand, T., Siles, V.: A decision procedure for regular expression equivalence in
type theory. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086,
pp. 119–134. Springer, Heidelberg (2011)

3. Danielsson, N.A.: Total parser combinators. In: Proc. of 15th ACM SIGPLAN Int.
Conf. on Functional Programming, ICFP 2010, pp. 285–296. ACM (2010)

4. Grune, D.: Parsing Techniques: A Practical Guide, 2nd edn. Springer (2010)
5. Krauss, A., Nipkow, T.: Proof pearl: Regular expression equivalence and relation

algebra. J. of Autom. Reasoning 49(1), 95–106 (2012)
6. Macedo, H.D., Oliveira, J.N.: Typing linear algebra: A biproduct-oriented approach.

Sci. of Comput. Program. 78(11), 2160–2191 (2013)
7. Morrisett, G., Tan, G., Tassarotti, J., Tristan, J.B., Gan, E.: Rocksalt: better, faster,

stronger SFI for the x86. In: Proc. of 33rd ACM SIGPLAN Conf. on Programming
Language Design and Implementation, PLDI 2012, pp. 395–404. ACM (2012)

8. Norell, U.: Dependently typed programming in Agda. In: Koopman, P., Plasmei-
jer, R., Swierstra, D. (eds.) AFP 2008. LNCS, vol. 5832, pp. 230–266. Springer,
Heidelberg (2009)

9. Wu, C., Zhang, X., Urban, C.: A formalisation of the Myhill-Nerode theorem based
on regular expressions (Proof pearl). In: van Eekelen, M., Geuvers, H., Schmaltz,
J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 341–356. Springer, Heidelberg
(2011)

	Certified Parsing of Regular Languages
	1
Introduction
	2
Regular Expressions
	3
A Matrix Library
	3.1
Matrices and Matrix Operations
	3.2
Block Operations
	3.3
Properties of Block Operations

	4
FAs and Parsing with NFAs
	4.1
Nondeterministic Finite Automata
	4.2
Running an NFA
	4.3
Converting Regular Expressions to NFAs (Parsers)
	4.4
Correctness
	4.5
Parsing

	5
Related Work
	6
Conclusion
	References

