
Course-of-Value Induction in Cedille
Denis Firsov, Larry Diehl, Christopher Jenkins, and Aaron Stump
University of Iowa, USA
{firstname-lastname}@uiowa.edu

Abstract
In the categorical setting, histomorphisms model a course-of-value recursion scheme that allows
functions to be defined using arbitrary previously computed values. In this paper, we use the Calculus
of Dependent Lambda Eliminations (CDLE) to derive a lambda-encoding of inductive datatypes
that admits course-of-value induction. Similar to course-of-value recursion, course-of-value induction
gives access to inductive hypotheses at arbitrary depth of the inductive arguments of a function. We
show that the derived course-of-value datatypes are well-behaved by proving Lambek’s lemma and
characterizing the computational behavior of the induction principle. Our work is formalized in the
Cedille programming language and also includes several examples of course-of-value functions.

2012 ACM Subject Classification Software and its engineering → Functional languages; Software
and its engineering → Data types and structures

Keywords and phrases type theory, lambda-encodings, Cedille, course-of-value, histomorphisms,
induction principle, inductive datatypes

1 Introduction

Dependently typed programming languages with built-in infrastructure for defining inductive
datatypes allow programmers to write functions with complex recursion patterns. For
example, in Agda [12] we can implement the natural definition of Fibonacci numbers:

fib : Nat → Nat
fib zero = zero
fib (suc zero) = 1
fib (suc (suc n)) = fib (suc n) + fib n

This definition is accepted by Agda because its built-in termination checker sees that all
recursive calls are done on structurally smaller arguments. In contrast, in pure polymorphic
lambda calculi (e.g., System F), inductive datatypes can be encoded by means of impredicative
quantification (without requiring additional infrastructure). For example, if we assume that
F is a well-behaved positive scheme (e.g., a functor), then we can express its least fixed point
as an initial Mendler-style F-algebra. A Mendler-style algebra differs from a traditional F-
algebra (F X → X) in that it takes an additional argument (of type R → X), which corresponds
to a function for making recursive calls. Mendler-style algebras introduce a polymorphic
type R for recursive scheme arguments, allowing recursive function calls to be restricted to
structurally smaller arguments. At the same time, the polymorphic type prevents any kind
of further inspection of those arguments (for the remainder of this paper we switch to code
written in Cedille [16], a dependently typed programming language supporting impredicative
type quantification):

AlgM J (? → ?) → ? → ? = λ F. λ X. ∀ R : ?. (R → X) → F R → X.
FixM J (? → ?) → ? = λ F. ∀ X : ?. AlgM F X → X.
foldM J ∀ F : ? → ?. ∀ X : ?. AlgM F X → FixM F → X
= Λ F. Λ X. λ alg. λ v. v alg.

The simple recursion pattern provided by foldM (also known as catamorphism) can be
tricky to work with. Let us define natural numbers as the least fixed point of the functor

mailto:\protect \T1\textbraceleft firstname-lastname\protect \T1\textbraceright @uiowa.edu

2

NF X = 1 + X. Hutton [6] explained that it is possible to use the universality law of initial
F-algebras to show that there is no algebra g : AlgM NF Nat such that fib = foldM g.
The reason for this is that in the third equation (of the natural definition of fib), the
recursive call is made not only on the direct predecessor of the argument (suc n), but also
on the predecessor of the predecessor (n).

The usual workaround involves “tupling”. More specifically, we define an algebra
AlgM NF (Nat × Nat) where the second Nat denotes the previous Fibonacci number. Then,
we fold the input with fibAlg, and finally return the first projection of the tuple (here πi

denotes i-th projection from the tuple):

fibAlg J AlgM NF (Nat × Nat) = Λ R. λ rec. λ fr.
case fr (λ _. pair (suc zero) zero) % zero case

(λ r. let p = rec r in % suc case
pair (add (π1 p) (π2 p)) (π1 p)).

fibTup J Nat → Nat = λ n. π1 (foldM fibAlg n).

In this example, the rec function allows recursive calls to be made explicitly on elements
of type R (which is Nat in disguise). This approach requires error-prone bookkeeping.
Additionally, observe that the defining equation of the Fibonacci numbers (fibTup (suc
(suc n)) = fibTup n + fibTup (suc n)) is true propositionally, but not definitionally
(i.e., it does not follow by β-reduction).

The alternative solution to tupling is course-of-value recursion (also known as histomorph-
ism), which makes it possible to express nested recursive calls directly. The central concept
of this approach is course-of-value F-algebras, which are similar to usual Mendler-style
F-algebras, except that they take an abstract destructor (of type R → F R) as yet another
additional argument. The abstract destructor is a fixed-point unrolling (or, abstract inverse
of the initial algebra), and intuitively allows for “pattern-matching” on constructors for the
scheme F.

AlgCV J (? → ?) → ? → ? = λ F. λ X.
∀ R : ?. (R → F R) → (R → X) → F R → X.

For illustration purposes, assume that F is a functor and that FixCV F is its least fixed
point. Also, assume that inCV and outCV are mutual inverses and represent a collection of
constructors and destructors, respectively.

inCV J F (FixCV F) → FixCV F = <..>
outCV J FixCV F → F (FixCV F) = <..>

Then, course-of-value recursion is characterized by the function foldCV, and its reduction
behaviour is characterized by the cancellation property (cancel):

foldCV J ∀ X : ?. AlgCV F X → FixCV F → X = <..>
cancel J ∀ X : ?. ∀ alg : AlgCV F X. ∀ fx : F (FixCV F).

foldCV alg (inCV fx) ' alg outCV (foldCV alg) fx = β.

Notice that after unfolding, the first argument of alg is instantiated with outCV (the
destructor), and the second argument is instantiated with a partially applied foldCV (the
recursive call).

To illustrate the nested recursive calls, we define course-of-value naturals (NatCV) as the
course-of-value least fixed point of the functor NF (FixCV NF). Then, the Fibonacci function
can be implemented very close to the conventional “pattern-matching” style:

D. Firsov, L. Diehl, C. Jenkins, and A. Stump 3

fibCV J NatCV → NatCV = foldCV (Λ R. λ out. λ rec. λ nf.
case nf (λ _. zero) % zero case
(λ r. case (out r) (λ _. suc zero) % (suc zero) case

(λ r’. rec r + rec r’))). % (suc (suc n)) case

Here, out provides an additional layer of pattern-matching on the arguments of the function.
Finally, it is important to observe that given that cancel is true by β-reduction, then
fibCV (suc (suc n)) ' fibCV (suc n) + fibCV n is also true by β-reduction.

The remaining questions is how to define the least fixed point FixCV F for any positive
scheme F, and how to derive the corresponding introduction and elimination principles. We
might try a usual construction in terms of universal quantification and AlgCV:

FixCV J (? → ?) → ? = λ F. ∀ X : ?. AlgCV F X → X.

This definition fails since AlgCV F X is isomorphic to AlgM (Enr’ F) X where

Enr’ J (? → ?) → ? → ? = λ F. λ X. F X × (X → F X).

Enr’ F is a negative scheme and (in general) the least fixed points of negative schemes are
undefined in a consistent type theory. As a result, it is common to implement foldCV in
terms of general recursion from the host language or to add it as a primitive construction
(see related work in Section 6).

The main contribution of this paper is the derivation of course-of-value datatypes
in the Calculus of Dependent Lambda Eliminations (CDLE). The key inspiration for our
work comes from the categorical construction known as restricted existentials (Section 3).
We prove that the least fixed point of the restricted existential of scheme Enr’ F exists,
and that it contains course-of-value datatypes as a subset (Section 4.1). Next, we employ
heterogeneous equality from CDLE to define the datatype FixCV as this subset (Section 4.2).
We also give (according to our best knowledge) the first generic formulation and derivation
of a course-of-value induction principle in a pure type theory. Finally, we show examples of
functions and proofs defined over course-of-value natural numbers (Section 5).

The CDLE type theory is implemented in Cedille, which we use to type-check the
formalized development of this paper.1 We emphasize that part of the significance of our
work is deriving course-of-value induction within the small core calculus of CDLE. While the
Calculus of Inductive Constructions (CIC) [9] directly adds support for inductive datatypes
to the Calculus of Constructions (CC) in an involved way, CDLE is a minor extension of CC
that makes inductive datatypes derivable rather than built-in.

2 Background

2.1 The CDLE Type Theory
CDLE [13, 15] is an extrinsically typed (or, Curry-style) version of the Calculus of Construc-
tions (CC), extended with a heterogeneous equality type (t1 ' t2)2, Kopylov’s [7] dependent
intersection type (ι x : T. T’), and Miquel’s [10] implicit product type (∀ x : T. T’, for
erased arguments). To make type checking algorithmic, Cedille terms have typing annotations,

1 The Cedille formalization accompanying this paper is available at:
http://firsov.ee/cov-induction

2 The most recent version of CDLE [16] has been extended with a more expressive equality type, but this
work does not make use of it.

http://firsov.ee/cov-induction

4

and definitional equality of terms is modulo erasure of these annotations. The target of
erasure in Cedille is the pure untyped lamba calculus with no additional constructs. Due
to space constraints, we omit a more detailed summary of CDLE. However, this work is a
direct continuation of our previous work [3], which includes a detailed explanation of all of
the constructs of Cedille.

2.2 Identity Functions and Identity Mappings

Stump showed how to derive induction for natural numbers in CDLE [14]. This result was
generically extended to achieve induction for arbitrary datatypes that arise as a least fixed
point of a functor [4]. One final generalization restricted fmap to be defined over functions
that extensionally behave like identity functions (the type Id). Least fixed points of such
“identity mapping” (the type IdMapping) schemes can be defined for a larger collection of
datatypes, compared to functors. We omit the implementations below (indicated by <..>),
but a detailed description of these constructs can be found in [3].

2.2.0.1 Identity Functions

We define the type Id X Y as the collection of all functions from X to Y that erase to the
term (λ x. x):

Id J ? → ? → ? = λ X. λ Y. Σ f : X → Y. f ' (λ x. x).

Because Cedille is extrinsically typed, the domain (X) and codomain (Y) of an identity
function need not be the same. An identity function Id X Y can be eliminated to “cast”
values of type X to values of type Y without changing the values themselves:

elimId J ∀ X Y : ?. ∀ c : Id X Y. X → Y = <..>

Note that argument c of elimId is quantified using ∀ (rather than Π), indicating that
it is an implicit (or, erased) argument. Significantly, the erasure |elimId -c| (the dash
syntactically indicates that this an implicit, or erased, application) results in the identity
function (λ x. x)3.

2.2.0.2 Identity Mappings

We say that scheme F is an identity mapping if it is equipped with a function that lifts
identity functions:

IdMapping J (? → ?) → ? = λ F. ∀ X Y: ?. Id X Y → Id (F X) (F Y).

Intuitively, IdMapping F is similar to a functor’s fmap, but it only needs to be defined on
identity functions, and no additional laws are required. Every functor induces an identity
mapping, but not vice versa [3].

3 Types, as opposed to values, are always erased in terms. Hence, using (∀ X : ?) in the classifier of a
term is sensible but using (Π X : ?) is not. Additionally, we omit type applications in terms because
they are inferred by Cedille.

D. Firsov, L. Diehl, C. Jenkins, and A. Stump 5

2.3 Inductive Datatypes in Cedille
Next, we review the generic datatype constructions (from [3]) definable using the constructions
above. To start with, we specify a scheme F and its identity mapping as module-level
parameters (such that every definition in this section begins with these parameters).

module (F : ? → ?){imap : IdMapping F}.

Curly braces around the imap variable indicate that it is quantified implicitly (or, as an
erased parameter). Another way of saying this is that none of the definitions should depend
on the computational behaviour of imap.

The fixpoint type (FixIndM J ?) is defined as an intersection of FixM and a proof of its
inductivity (see [3] for details). FixIndM comes with a constructor (inFixIndM J F FixIndM
→ FixIndM), and its mutually inverse destructor (outFixIndM J FixIndM → F FixIndM).
The induction principle for FixIndM takes a “dependent” counterpart to Mendler-style
F-algebras (AlgM), which we call Q-proof-algebras (PrfAlgM):

induction J ∀ Q : FixIndM → ?. PrfAlgM Q → Π e : FixIndM. Q e = <..>

A value of type PrfAlgM Q should be understood as an inductive proof that predicate Q holds
for every FixIndM built by constructors inFixIndM. Just like F-algebras, Q-proof-algebras
allow users to invoke inductive hypotheses only on direct subdata of a given argument. The
rest of the paper is devoted to the formulation and derivation of a generic course-of-value
induction principle that allows users to invoke inductive hypotheses on subdata at arbitrary
depths (realized as inductionCV for any PrfAlgCV in Section 4.2).

3 Restricted Existentials

Uustalu and Vene defined a construction called the restricted existential to demonstrate an
isomorphism between Church-style and Mendler-style initial algebras [17]. The importance of
this is that for any difunctor (or, mixed variant functorial scheme) F, the restricted existential
of F is an isomorphic covariant functor.

In this section, we define a variation that we call an identity restricted existential. We also
derive its dependent elimination principle, and prove that the identity restricted existential
of any scheme F (including negative and non-functorial ones) is an identity mapping. Later
in the paper, the restricted existential will be the main tool for deriving course-of-value
datatypes.

3.1 Restricted Coends
In the categorical setting, the restricted existential arises as a restricted coend. Our subsequent
development requires existentials where the quantifier ranges over types. This can be
provided by a restricted coend (RCoend H F), which is isomorphic to the existential type
∃ R. H R × F R (where H is what we are restricting by). Our development defines RCoend
by taking advantage of the isomorphism between the universal type ∀ R. H R → F R → Q
and the existential type (∃ R. H R × F R) → Q (for any Q) that we have in mind. Now,
let us formalize the notion of restricted coend.

Let F : Cop × C → C be an endodifunctor and H : Cop × C → Set be a difunctor to Set.
An H-restricted F -coend is an initial object in the category of H-restricted F -cowedges. An
H-restricted F -cowedge is a pair (C,Φ) where C (the carrier) is an object in C and {ΦR}R∈C
is a family of functions (dinatural transformations) between sets H R R and C(F R R,C).

6

We translate this definition to Cedille, where an H-restricted F -cowedge (C,Φ) corres-
ponds to a type (C) and a polymorphic function (RCowedge H F C):

RCowedge J (? → ?) → (? → ?) → ? → ?

= λ H. λ F. λ C. ∀ R : ?. H R ⇒ F R → C.

To simplify the subsequent development, we render difunctors as schemes with a single
parameter, and the restriction H R is made implicit (denoted by⇒, which is a non-dependent
version of ∀). The simplification of making the restriction parameter erased allows us to avoid
needing function extensionally to achieve our encoding. The carrier of the initial cowedge
can be implemented in terms of universal quantification:

RCoend J (? → ?) → (? → ?) → ? = λ H. λ F. ∀ C : ?. RCowedge H F C → C.

The second component of initial cowedges is a polymorphic function, (intrRCoend), which
plays the role of the constructor of its carrier (RCoend H F), and is implemented as follows:

intrRCoend J ∀ H F : ? → ?. RCowedge H F (RCoend H F)
= Λ H. Λ F. Λ R. Λ ac. λ ga. (Λ Y. λ q. q R -ac ga).

The (weak) initiality can be proved by showing that for any cowedge RCowedge H F C, there
is a homomorphism from RCoend H F to C:

elimRCoend J ∀ H F: ? → ?.∀ C: ?. RCowedge H F C → RCoend H F → C
= Λ F. Λ A. Λ C. λ phi. λ e. e phi.

3.2 Dependent Elimination for Restricted Coends
In this section, we utilize the intersection type (denoted by ι in Cedille) to define a restricted
coend type for which the induction principle is provable. To do this, we follow the original
recipe described by Stump to derive natural-number induction in Cedille. First, we define a
predicate expressing that an H-restricted F-coend is inductive.

RCoendInductive J Π H F : ? → ?. RCoend H F → ?

= λ H. λ F. λ e. ∀ Q : RCoend H F → ?.
(∀ R : ?. ∀ hr : H R. Π fr : F R. Q (intrRCoend -hr fr)) → Q e.

Second, we define the “true” inductive restricted coend as an intersection of the previously
defined RCoend and the predicate RCoendInductive. In essence, this says that RCoendInd
is the subset of RCoend carved out by the RCoendInductive predicate.

RCoendInd J (? → ?) → (? → ?) → ?

= λ H. λ F. ι x : RCoend H F. RCoendInductive H F x.

This definition builds on an observation by Leivant that under the Curry-Howard isomorphism,
proofs in second-order logic that data satisfy their type laws can be seen as isomorphic to the
Church-encodings of those data [8]. Next, we define the constructor for the inductive coend:

intrRCoendInd J ∀ H F : ? → ?. RCowedge H F (RCoendInd H F)
= Λ H. Λ F. Λ R. Λ hr. λ fr.
[intrRCoend -hr fr , Λ Q. λ q. q R -hr fr].

In Cedille, the term [t , t’] introduces the intersection type ι x : T. T’ x, where t
has type T and t’ has type [t/x]T’. Definitionally, values of intersection types reduce (via
erasure) to their first components (i.e., [t , t’] is definitionally equal to t). See [3] for
more information on intersection types in Cedille. The induction principle is now derivable
and has the following type:

D. Firsov, L. Diehl, C. Jenkins, and A. Stump 7

indRCoend J ∀ H F : ? → ?. ∀ Q : RCoendInd H F → ?.
(∀ R : ?. ∀ hr : H R. Π fr : F R. Q (intrRCoendInd -hr fr))
Π e : RCoendInd H F. Q e = <..>

3.3 Identity Restricted Existentials
We define the identity restricted existential of F and the object C as an F-coend restricted by
a family of identity functions λ X. Id X C:

RExtInd J (? → ?) → ? → ? = λ F. λ X. RCoendInd (λ R : ?. Id R X) F.

Next, we prove that the restricted existential of any F is an identity mapping:

imapRExt J ∀ F : ? → ?. IdMapping (RExtInd F)
= Λ F. Λ A. Λ B. Λ f. λ c. indRCoend c

(Λ R. Λ i. λ gr. pair (intrRExtInd -(compose i f) gr) β).

Intuitively, RExtInd F X corresponds to the type ∃ R. Id R X × F R. Notice that RExtInd F X
is positive because X occurs positively in Id, and that positivity does not depend on F. With
the definition of identity restricted existentials in place, we can now move on towards using
them to derive course-of-value induction.

4 Course-of-Value Datatypes

In this section we review why the naive scheme for an inductive datatype with a destructor
does not work out due to negativity (as mentioned in the introduction, Section 1). Then,
we demonstrate how identity restricted existentials (RExtInd of Section 3) can be used in
our novel encoding to overcome this limitation, allowing us to define datatypes supporting
course-of-value induction. The development in this section is parameterized by an identity
mapping:

module (F : ? → ?){imap : IdMapping F}.

4.1 Precursor
In [17], Uustalu and Vene showed that it is possible to use restricted existentials to derive
a superset of course-of-value natural numbers. We start by generalizing their construction
to arbitrary inductive types, in terms of least fixed points of identity mappings. The main
idea is to define a combinator that pairs the value F X with the destructor function (of type
X → F X):

Enr’ J ? → ? = λ X. F X × (X → F X).

Intuitively, we wish to construct a least fixed point of F and its destructor simultaneously.
The resulting scheme Enr’ F is not positive and therefore it cannot be a functor nor an
identity mapping. This implies that we cannot take a least fixed point of it directly. Instead,
we define CVF’ F as a restricted existential of Enr’ F. Hence, the scheme CVF’ F is an
identity mapping by the property of restricted existentials:

CVF’ J ? → ? = RExtInd (Enr’ F).
imCVF’ J IdMapping (CVF’ F) = imapRExt (Enr’ F).

It is natural to ask what the relationship between the least fixed point of F and least fixed
point of CVF’ F is.

8

FixCV’ J ? = FixIndM (CVF’ F) -(imCVF’ F).

It turns out that FixCV’ is not a least fixed point of F, because value F FixCV’ could be
paired with any function of type FixCV’ → F FixCV’. We will provide more intuition by
describing the destructor and constructor functions of FixCV’.

4.1.0.1 Destructor

The generic development from Section 2.3 allows us to unroll FixCV’ into a value of
CVF’ FixCV’ (which it was made from). Because CVF’ F is a restricted existential, we
can use its dependent elimination to “project out” the value F FixCV’:
outCV’ J FixCV’ → F FixCV’ = λ x. indRExt (outFixIndM -imapRExt x)

(Λ R. Λ c. λ v. elimId -(imap -c) (π1 v)).

In the definition above, the variable v has type F R × (R → F R). Because F is an identity
mapping, we can cast the first projection of v to F FixCV’ and return it. On the other hand,
the function R → F R cannot be casted to type FixCV’ → F FixCV’, because the abstract
type R appears both positively and negatively.

4.1.0.2 Constructor

Similarly, the generic development gives us the function inFixIndM, which constructs a
FixCV’ value from the given CVF’ FixCV’. The latter must be built from a pair of F FixCV’
and a function of type FixCV’ → F FixCV’. This observation gives rise to the following
specialized constructor of FixCV’:
inCV’ J (FixCV’ → F FixCV’) → F FixCV’ → FixCV’ = <..>

This constructor indicates that FixCV’ represents the superset of course-of-value datatypes,
because the function FixCV’ → F FixCV’ is not restricted to the destructor outCV’, and
the inductive value might contain a different function of that type at every construtor. We
address this issue in the next section.

4.2 Course-of-Value Datatypes with Induction
In our previous work [3], we developed a generic unrolling function for least fixed points of
identity mappings:
outFixIndM J ∀ imap : IdMapping F. FixIndM F → F (FixIndM F) = <..>

Observe that the only identity-mapping-specific variable is quantified implicitly. In other
words, outFixIndM does not perform any F-specific computations. The same is true for the
elimination principle of restricted existentials (indRCoend). Since outCV’ is implemented in
terms of these functions, this observation suggests that we can refer to outCV’ as we define
the subset of type FixCV’. In particular, we define the scheme Enr by pairing the value F X
with the function f : X → F X and the proof that this function is equal to the previously
defined outCV’:
Enr J ? → ? = λ X. F X × Σ f : X → F X. f ' outCV’.

This constraint between terms of different types is possible due to heterogeneous equality.
Just like in the previous section, we define a least fixed point of the restricted existential of
Enr F and its least fixed point:
CVF J ? → ? = λ X. RExtInd (Enr F) X.
FixCV J ? = FixIndM CVF (imapRExt Enr).

D. Firsov, L. Diehl, C. Jenkins, and A. Stump 9

4.2.0.1 Destructor

The destructor of FixCV is represented by exactly the same lambda-term as the destructor
(outCV’) of FixCV’:

outCV J FixCV → F FixCV = λ v. indRExt
(outFixIndM -imapRExt v) (Λ R. Λ c. λ v. elimId -(imap -c) (π1 v)).

outCVEq J outCV’ ' outCV = β.

Because the only difference between outCV’ and outCV is their typing annotations (which
are inferred by the typechecker), they are definitionally equal in Cedille (as witnessed by β,
the introduction rule of Cedille’s equality type).

4.2.0.2 Constructor

Armed with the destructor outCV and the proof outCVEq, we can now define the constructor
of FixCV:

inCV J F FixCV → FixCV = Λ F. Λ imap. λ fcv. inFixIndM -imapRExt
(intrRExtInd -trivIdExt) (pair fcv (pair (outCV -imap) outCVEq)).

4.2.0.3 Lambek’s Lemma

As expected, inCV and outCV are mutual inverses, which establishes that FixCV is a fixed
point of F.

lambekCV1 J ∀ x : F FixCV. outCV (inCV x) ' x = β.
lambekCV2 J ∀ x : FixCV. inCV (outCV x) ' x = <..>

Note that lambekCV1 holds definitionally, while lambekCV2 is provable by straightforward
induction (actually, the proof only uses dependent case analysis, and ignores the inductive
hypothesis).

4.2.0.4 Induction

Recall that the induction principle for the least fixed point FixIndM is stated in terms of
proof-algebras (PrfAlgM in Section 2.3). Now, let us define proof-algebras for course-of-value
datatypes:

PrfAlgCV J (FixCV → ?) → ? = ∀ R : ?. ∀ c : Id R FixCV.
Π out : R → F R. out ' outCV ⇒ Π ih : Π r : R. Q (elimId -c r).
Π fr : F R. Q (inCV (elimId -(imap -c) fr))

Compared to PrfAlgM [3], PrfAlgCV has an extra argument (out : R → F R), which rep-
resents an unrolling (or, abstract predecessor) function for abstract type R. Additionally, we
have a proof that the out function is equal to the previously discussed destructor outCV.
This evidence is needed when the construction of a particular proof-algebra depends on
the exact definition of the predecessor function. Besides those two extra arguments, the
identity function (c) from abstract R to concrete FixCV, the inductive hypothesis (ih), and
the subdata (fr) are the same as in PrfAlgM [3].

Course-of-value induction is expressible in terms of course-of-value proof-algebras and
is proved by combining the induction principle of FixIndM with the dependent elimination
principle of restricted existentials.

10

inductionCV J ∀ Q : FixCV → ?. PrfAlgCV Q → Π x : FixCV. Q x = <..>

It is important to establish the computational behaviour of this proof-principle:

indCancel J ∀ Q : FixCV → ?. ∀ palg : PrfAlgCV Q. ∀ x : F FixCV.
inductionCV palg (inCV x) ' palg outCV (inductionCV palg) x = β.

Above, notice how the abstract unrolling function out : R → F R is being instantiated with
the actual unrolling function outCV. Finally, implementing course-of-value recursion (foldCV)
from Section 1 in terms of course-of-value induction (inductionCV) is straightforward.

Finally, note that while FixIndM and FixCV values are not definitionally equal, their
types are isomorphic, and they have the same asymptotics. Hence, in practice high-level
datatype declarations can always elaborated to their course-of-value encodings, rather than
maintaining two encodings for every type.

5 Examples

We now demonstrate the utility of our results with example functions and proofs on natural
numbers that require course-of-value recursion and induction. Note that the fibCV example
from the introduction (Section 1) works as described, because foldCV is derivable from
inductionCV. Recall that natural numbers may be defined as the least fixed point of a
functor (NF J ? → ? = λ X. Unit + X.). As remarked in Section 2.2.0.2, because NF
is a functor, it is also an identity mapping (nfimap J IdMapping NF = <..>). We begin
by defining the type of natural numbers (NatCV), supporting a constant-time predecessor
function, as well as course-of-value induction:

NatCV J ? = FixCV F nfimap.
zero J NatCV = inCV -nfimap (in1 unit).
suc J NatCV → NatCV = λ n. inCV -nfimap (in2 n).
pred J NatCV → NatCV = λ n. case (outCV -nfimap n) (λ u. n) (λ n’. n’).

5.1 Division
Consider an intuitive definition of division as iterated subtraction:

div : Nat → Nat → Nat
div 0 m = 0
div n m = if (n < m) then 0 else (suc (div (n - m) m))

Such a definition is rejected by Agda (and many languages like it), because Agda requires that
recursive calls are made on arguments its termination checker can guarantee are structurally
smaller, which it cannot do for an arbitrary expression (like n - m). With our development,
the problematic recursive call (on n - m) is an instance of course-of-value recursion because
we can define subtraction by iterating the predecessor function, and we have access to
recursive results for every predecessor.

For convenience, we define the conventional foldNat as a specialized version of our generic
development. Then, minus n m is definable as the m number of predecessors of n.

foldNat J ∀ R : ?. (R → R) → R → NatCV → R
= Λ R. λ rstep. λ rbase. foldCV (Λ R’. λ out. λ rec. λ nf.
case nf (λ _. rbase) (λ r’. rstep (rec r’))).

minus’ J ∀ R : ?. (R → NF R) → R → NatCV → R

D. Firsov, L. Diehl, C. Jenkins, and A. Stump 11

= Λ R. λ pr. foldNat (λ r. case (pr r) (λ _. r) (λ r’. r’))
minus J NatCV → NatCV → NatCV = minus’ (outCV -nfimap).

Above, we first define an abstract operation minus’ n m, where the type of n is poly-
morphic and where that type comes with an abstract predecessor pr. Then, the usual
concrete minus n m is recovered by using NatCV for the polymorphic type and the destructor
outCV -nfimap for the predecessor.

Now we can use minus’ to define division naturally, returning zero in the base case, and
iterating subtraction in the step case. This definition below is accepted purely through
type-checking and without any machinery for termination-checking.

div J NatCV → NatCV → NatCV
= λ n. λ m. inductionCV (Λ R. Λ c. λ pr. Λ preq. λ ih. λ nf.
case nf

(λ x. zero) % div 0 m
(λ r. if (suc (elimId -c r) < m) % div (suc n) m

then zero
else (suc (ih (minus’ pr r (pred m)))))) n

Notice that in the conditional statement, we use elimId -c to convert the abstract
predecessor r to a concrete natural number, allowing us to apply suc to check if suc n
is less than m. In the intuitive definition of div, we match on 0 in the first case, and
on any wildcard pattern n in the second case. In contrast, when using inductionCV and
case in our example, we must explicitly handle the zero and suc r cases. Consequently,
while the intuitive definition recurses on div (n - m) m, we recurse on the predecessors
ih (minus’ pr r (pred m)). This is equivalent because minus (suc n) (suc m) is equal
to minus n m, for all numbers n and m. We can also prove properties about our development,
such as the aforementioned equivalence (minSucSuc below, proven by ordinary induction).
By direct consequence, we can also prove that the defining equation (divSucSuc below, for
the successor case) of the intuitive definition of division holds (by ordinary induction and
rewriting by minSucSuc):

minSucSuc J Π n m : NatCV. minus (suc n) (suc m) ' minus n m = <..>
divSucSuc J Π n m : NatCV. (suc n < suc m) ' ff →

div (suc n) (suc m) ' suc (div (minus (suc n) (suc m)) (suc m)) = <..>

While the propositions are stated in terms of concrete minus, the div function is defined in
terms of abstract minus’. Nonetheless, the propositions are provable due to the computational
behavior of inductionCV, which instantiates the bound pr with outCV, allowing us to identify
minus’ pr and minus.

5.2 Property of Division
Besides this section, this paper contains (mostly omitted) proofs by definitional equality,
rewriting, dependent case-analysis, and/or ordinary induction. In this section we prove
a property of division that takes full advantage of course-of-value induction (our primary
contribution).

We assume the existence of a less-than-or-equal relation (whose definition is omitted
for space reasons) on course-of-value naturals (LE J NatCV → NatCV → ?), with two
constructors for evidence in the zero case (leZ J Π n : NatCV. LE zero n), and in the
successor case (leS J ∀ n m : NatCV. LE n m → LE (suc n) (suc m)). Additionally,

12

we will need a lemma that LE is transitive (leTrans J ∀ x y z : NatCV. LE x y → LE
y z → LE x z), and a lemma that subtraction decreases a number or keeps it the same
(leMinus J Π n m : NatCV. LE (minus n m) n). Both of these lemmas are provable by
ordinary induction. Now, let’s prove our property of interest by course-of-value induction,
namely that division also decreases a number or keeps it the same:4

leDiv J Π n m : NatCV. LE (div n m) n
= λ n. λ m. inductionCV (Λ R. Λ c. λ pr. Λ preq. λ ih. λ nf.
case nf

(λ u. ρ (etaUnit u) - leZ zero) % Goal: LE (div zero m) zero
(λ r. let n1 = elimId -c r in % Goal: LE (div (suc n) m) (suc n)
if (suc n1 < m)
then (leZ (suc n1)) % Goal: LE zero (suc n)
else let % Goal: LE (suc (div (minus n (pred m)) m)) (suc n)

n2 = minus n1 (pred m)
n3 = div n2 m
n3LEn2 = ρ (sym preq) - ih (minus’ pr r (pred m))
n2LEn1 = leMinus n1 (pred m)
in leS -n3 -n1 (leTrans -n3 -n2 -n1 n3LEn2 n2LEn1))).

5.2.0.1 Zero Case

The expression div zero m in the goal reduces to zero, allowing us to conclude LE zero zero
by using the constructor leZ. The only caveat is that the reduction requires rewriting (using
Cedille’s ρ primitive) by the uniqueness of unit (etaUnit), because our generic encoding of
NatCV uses the unit type in the left part of the sum (NF X = 1 + X).

5.2.0.2 Successor Case (When the Conditional is True)

At first, the successor case of division is prevented from reducing further because it is
branching on a conditional statement (suc (elimId -c r) < m). In the true branch of this
conditional, the goal reduces and is immediately solvable using leZ. Note that we use a let
statement to name the result (variable n1) of converting the abstract predecessor r : R to a
concrete NatCV via the expression elimId -c r.

5.2.0.3 Successor Case (When the Conditional is False)

The goal in the false branch of the conditional is solvable by using leS, leaving us with
the subgoal LE (div (minus n (pred m)) m) (suc n). We name the inner subtraction-
expression n2, and the outer division-expression n3. We solve the subgoal (LE n3 n1) using
transitivity (leTrans) by showing that n3 ≤ n2 ≤ n1, leaving us with two final subsubgoals.
The second subsubgoal (LE n2 n1) is provable (n2LEn1) using our lemma about subtraction
getting smaller or staying the same (leMinus).

Finally, the first subsubgoal (LE n3 n2) is the interesting case (n3LEn2). First, we rewrite
using preq to change our goal from requiring the concrete natural number predecessor
(outCV -nfimap) to instead require the abstract predecessor (pr). We can use ih to get an
inductive hypothesis, of type LE (div (elimId -c r) m) (elimId -c r), for any abstract

4 To make the proof easier to read, we use non-depenent if and case statements. Our actual code
requires the dependent eliminator counterparts of these statements, along with the appropriate motives.

D. Firsov, L. Diehl, C. Jenkins, and A. Stump 13

natural number r. Thus, our final subsubgoal is solvable by the inductive hypothesis where
r is the result of the abstract subtraction minus’ pr r (pred m). Because elimId -c
is definitionally equal to the identity function, and because we already rewrote by preq,
this gives us exactly what we want. This is despite the fact that our original subsubgoal
(LE n3 n2) is stated in terms of n3 and n2, which use concrete div and minus, respectively!
Importantly, the inductive hypothesis we use requires course-of-value induction, obtained
by an expression that iterates the predecessor function (ih (minus’ pr r (pred m))). In
contrast, ordinary induction corresponds to using the inductive hypothesis ih r.

5.3 Catalan Numbers
Many solutions to counting problems in combinatorics can be given in terms of Catalan
numbers. The Catalan numbers are definable as the solution to the recurrence C0 = 1 and
Cn+1 =

∑n
i=0 CiCn−i. This translates to an intuitive functional definition of the Catalan

numbers:

cat : Nat → Nat
cat 0 = 1
cat (suc n) = sum (λ i → cat i * cat (n - i)) n

The sum function has type (Nat → Nat) → Nat → Nat, where the lower bound of the
sum is always zero (i=0), the second argument is the upper bound of the sum (n), and
the first argument is the body of the sum (parameterized by i). Once again, this is not a
structurally terminating function recognizable by Agda. While fib and div have a static
number of course-of-value recursions (two and one, respectively), the number of recursions
made by cat is determined by its input. Nonetheless, we are able to define cat using our
development.

cat J NatCV → NatCV
= inductionCV (Λ R. Λ c. λ pf. Λ pfeq. λ ih . λ nf.
case nf

(λ _. suc zero) % cat 0
(λ r. sum % cat (suc n)

(λ i. mult
(ih (minus’ pf r (minus (elimId -c r) i)))
(ih (minus’ pf r i)))

(elimId -c r))).

As with div, above r has abstract type R, so we convert it to a NatCV where necessary
by applying elimId -c. The intuitive right factor cat (n - i) is directly encoded as
ih (minus’ pf r i)). However, we cannot directly encode the intuitive left factor cat i,
because i is a natural number and we only have inductive hypotheses for values of abstract
type R. However, i is equivalent to n - (n - i) for all i where i ≤ n. We use the abstract
minus’ function for the outer subtraction, whose first numeric argument is an abstract r
but whose second numeric argument expects a concrete NatCV. Hence, the inner subtraction
is a concrete minus, whose first argument is the concrete version of r (converted via identity
function c) and whose second argument is the concrete i (of type NatCV). Because the
outer subtraction (minus’) returns an abstract R, we can get an inductive hypothesis for
an expression equivalent to i. Finally, we can prove the aforementioned equivalence for
minus (by rewriting), and as a consequence the defining equation (for the successor case) of

14

the intuitive definition of Catalan numbers (by dependent case-analysis and rewriting by
minusId):

minusId J Π n i : NatCV. (i ≤ n) ' tt → minus n (minus n i) ' i = <..>
catSuc J Π n : NatCV.

cat (suc n) ' sum (λ i. mult (cat i) (cat (minus n i))) n = <..>

Once again, the discrepancy between abstract minus’ and concrete minus is resolved in the
proofs thanks to the computational behavior of inductionCV instantiating pr to outCV.

6 Conclusions and Related Work

Ahn et al. [2] describe a hierarchy of Mendler-style recursion combinators. They implement
generic course-of-value recursion in terms of Haskell’s general recursion. Then, they prove that
course-of-value recursion for arbitrary “negative” inductive datatypes implies non-termination.

Miranda-Perea [11] describes extensions of System F with primitive course-of-value
iteration schemes. He explains that the resulting systems lose strong normalization if they
are combined with negative datatypes.

Uustalu et al. [18] show that natural-deduction proof systems for intuitionistic logics
can be safely extended with a course-of-value induction operator in a proof-theoretically
defensible way. Their requirement of monotonicity corresponds to our notion of IdMapping.

In contrast to the work described above, we have now shown that course-of-value induction
can be derived within type theory (specifically, within CDLE). We will end with comparing
our approach to alternative approaches to handling complex termination arguments within
type theory. 5

6.1 The Below Way
Goguen et al. [5] define the induction principle recNat (generalizing to all inductive types),
which they use to elaborate dependent pattern matching to eliminators. In the step case,
recNat receives BelowNat P n, which is a large tuple consisting of the motive P for every
predecessor of n. Simple functions performing nested pattern matching (e.g., fib) can be
written using recNat and nested case-analysis, by projecting out inductive hypotheses from
BelowNat P n. However, functions with more complex termination arguments (e.g., div and
cat) require proving extra lemmas (e.g., recMinus in our accompanying code) to dynamically
extract inductive hypotheses from BelowNat P n evidence. In our approach, such lemmas
are unnecessary.

6.2 Sized Types
Abel [1] extends type theory with a notion of sized types, which allows intuitive function
definitions to be accepted by termination checking. Course-of-value induction (CoVI) and
sized types (ST) have trade-offs. ST requires defining size-indexed versions of the datatypes,
which necessitates altering conventional type signatures of functions to include size informa-
tion. While CoVI is derivable within CDLE, ST extends the underlying type theory. On the
other hand, CoVI is restricted to functions that recurse strictly on previous values. Hence, a
function like merge sort can be written using ST but not with CoVI. As future work, we

5 For comparison, our accompanying code includes Agda formalizations of fib, div, and cat in the
“Below” style of Section 6.1 and the sized types style of Section 6.2.

D. Firsov, L. Diehl, C. Jenkins, and A. Stump 15

would like to investigate datatype encodings with a restricted version of abstract constructors
(in addition to abstract destructors) for defining functions like merge sort.

References
1 Andreas Abel. MiniAgda: Integrating sized and dependent types. In Workshop on Partiality

And Recursion in Interactive Theorem Provers (PAR), July 2010.
2 Ki Yung Ahn and Tim Sheard. A hierarchy of mendler style recursion combinators: Taming

inductive datatypes with negative occurrences. In Proceedings of the 16th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’11, pages 234–246, New York,
NY, USA, 2011. ACM.

3 Denis Firsov, Richard Blair, and Aaron Stump. Efficient mendler-style lambda-encodings in
cedille. In Interactive Theorem Proving - 9th International Conference, ITP 2018, Held as
Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings,
pages 235–252, 2018.

4 Denis Firsov and Aaron Stump. Generic derivation of induction for impredicative encodings
in cedille. In Proceedings of the 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2018, pages 215–227, New York, NY, USA, 2018. ACM.

5 Healfdene Goguen, Conor McBride, and James McKinna. Eliminating dependent pattern
matching. In Algebra, Meaning, and Computation, pages 521–540. Springer, 2006.

6 Graham Hutton. A tutorial on the universality and expressiveness of fold. J. Funct. Program.,
9(4):355–372, July 1999.

7 Alexei Kopylov. Dependent intersection: A new way of defining records in type theory. In
18th IEEE Symposium on Logic in Computer Science (LICS), pages 86–95, 2003.

8 Daniel Leivant. Reasoning about functional programs and complexity classes associated with
type disciplines. In 24th Annual Symposium on Foundations of Computer Science (FOCS),
pages 460–469. IEEE Computer Society, 1983.

9 The Coq development team. The Coq proof assistant reference manual. LogiCal Project, 2016.
Version 8.5. URL: http://coq.inria.fr.

10 Alexandre Miquel. The Implicit Calculus of Constructions Extending Pure Type Systems
with an Intersection Type Binder and Subtyping. In Samson Abramsky, editor, Typed Lambda
Calculi and Applications (TLCA), pages 344–359. 2001.

11 Favio Ezequiel Miranda-Perea. Some remarks on type systems for course-of-value recursion.
Electronic Notes in Theoretical Computer Science, 247:103 – 121, 2009. Proceedings of the
Third Workshop on Logical and Semantic Frameworks with Applications (LSFA 2008).

12 Ulf Norell. Towards a practical programming language based on dependent type theory. PhD
thesis, Chalmers University of Technology, 2007.

13 Aaron Stump. The Calculus of Dependent Lambda Eliminations. Journal of Functional
Programming, 27:e14.

14 Aaron Stump. From Realizability to Induction via Dependent Intersection, 2017. Under
consideration for Annals of Pure and Applied Logic.

15 Aaron Stump. From Realizability to Induction via Dependent Intersection. Ann. Pure Appl.
Logic, 2018. to appear.

16 Aaron Stump. Syntax and Semantics of Cedille. 2018. arXiv:1806.04709.
17 Tarmo Uustalu and Varmo Vene. Mendler-style inductive types, categorically. Nordic J. of

Computing, 6(3):343–361, September 1999.
18 Tarmo Uustalu and Varmo Vene. Least and greatest fixed points in intuitionistic natural

deduction. Theoretical Computer Science, 272(1):315 – 339, 2002. Theories of Types and
Proofs 1997.

http://coq.inria.fr
http://arxiv.org/abs/1806.04709

	Introduction
	Background
	The CDLE Type Theory
	Identity Functions and Identity Mappings
	Inductive Datatypes in Cedille

	Restricted Existentials
	Restricted Coends
	Dependent Elimination for Restricted Coends
	Identity Restricted Existentials

	Course-of-Value Datatypes
	Precursor
	Course-of-Value Datatypes with Induction

	Examples
	Division
	Property of Division
	Catalan Numbers

	Conclusions and Related Work
	The Below Way
	Sized Types

