Generic derivation of induction for impredicative
encodings in Cedille

Denis Firsov and Aaron Stump
Department of Computer Science
The University of Iowa
Iowa City, IA, USA
{denis-firsov,aaron-stump}@uiowa.edu

Abstract

This paper presents generic derivations of induction for im-
predicatively typed lambda-encoded datatypes, in the Cedille
type theory. Cedille is a pure type theory extending the
Curry-style Calculus of Constructions with implicit prod-
ucts, primitive heterogeneous equality, and dependent inter-
sections. All data erase to pure lambda terms, and there is no
built-in notion of datatype. The derivations are generic in the
sense that we derive induction for any datatype which arises
as the least fixed point of a signature functor. We consider
Church-style and Mendler-style lambda-encodings. More-
over, the isomorphism of these encodings is proved. Also,
we formalize Lambek’s lemma as a consequence of expected
laws of cancellation, reflection, and fusion.

Keywords datatypes, lambda encodings, impredicativity,
Cedille, induction

1 Introduction

Can practically useful constructive type theory be developed
based on pure lambda calculus? For many decades the an-
swer has been no. Implementations like Coq and Agda of
constructive type theory augment a pure type system with
a subsystem for primitive user-declared datatypes [5, 13].
This is because, among other issues, induction is provably
not derivable in second-order dependent type theory [7]. In
this paper, we contribute an alternative, positive answer: we
show how to define a general class of inductive datatypes,
with their associated induction principles, within a compact
pure type theory called the Calculus of Dependent Lambda
Eliminations (CDLE) [18]. The theory is pure in the sense
that the language of terms is just that of pure untyped lambda
calculus, with no additional term operators. This Curry-style
type system extends the (Curry-style) Calculus of Construc-
tions with a small number of additional typing primitives.
Using these, the second author has already shown how to
derive natural-number induction within the type theory [19].
In this paper we go much further and present a general devel-
opment that derives induction abstractly, for any inductive
datatype which arises as a least fixed point of a signature

CPP’18, January 08-09, 2018, Los Angeles, CA, USA
2017. ACMISBN ... $15.00
https://doi.org/

functor. We give separate derivations for Church-encoded
datatypes and Mendler-encoded ones (these encodings are
reviewed in Section 3).

The technical contributions of the paper are:

1. We present the first generic derivation of induction in
a pure type theory.

2. To do this, we extend the standard notions of Church-
style and Mendler-style algebra, to dependently typed
versions we call proof algebras.

3. We show that our definitions of inductive datatypes
are well-behaved. In particular, we prove the Lam-
bek’s lemma as a consequence of derived properties
of reflection, cancellation, and fusion. Moverover, we
prove that Church-encoded datatypes are isomorphic
to Mendler-encoded datatypes. We also present the
utility of our derivation on several basic examples.

4. We observe that while as expected, both the identity
and composition functor laws are required for the
derivation of induction based on conventional alge-
bras (Church encoding), only the identity functor law
is needed for the induction rule for Mendler encodings.
To the best of our knowledge this is a novel observa-
tion which we plan to investigate in future to see if it
broadens the class of defineable datatypes.

Note that the first paper on CDLE includes a complex
form of recursive types [18]. We have since dropped this
construct after discovering induction is derivable without it,
in the presence of a primitive heterogeneous equality type,
which we use also in this paper [19].

2 Background

The starting point for the CDLE type theory in which we
work is the Curry-style Calculus of Constructions (CC). This
language is defined by a type-assignment system, assigning
the types of CC to pure unannotated lambda terms. These
types include dependent function types IIx:T.T’ and im-
predicative quantification VX : k. T over types at possibly
higher kind k. Example type-assignment rules include:

Ix:Tvrt:T I X:xkvrt:T
TrAx.t:IIx:T. T’ F'rt:VX:x. T

Note that in the second of these rules, the subject t of the
typing judgment does not change. Also note that X cannot

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

https://doi.org/

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

CPP’18, January 08-09, 2018, Los Angeles, CA, USA

be free in ¢ as t is a pure untyped A-term and hence contains
no type variables.

For algorithmic typing, CDLE uses annotated terms, which
contain enough information to apply the type-assignment
rules deterministically. So in the implementation, one uses
instead of the second rule above, this one, which is similar
to the usual rule for Church-style V-introduction:

I''X:xk+rt:T
'rAX:x.t:VX:x.T

Relatedly, when testing convertibility of types, the algorith-
mic type system compares the erasures of the types, where
when applying a type T to a term ¢, we must use |t|. The
erasure of AX : k.t, for example, is just the erasure of ¢,
matching up with the Curry-style version of ¥-introduction.

To Curry-style CC, CDLE adds three additional typing
constructs:

1. implicit products V x:T. T’ as in the Implicit Calculus
of Constructions [15],

2. a primitive heterogeneous equality type ¢ =~ ¢’ (based
on the one of McBride [14]) that expresses fn-equality
of two terms t and ¢’ of possibly different types, and

3. dependent intersection types tx:T. T’ as introduced
by Kopylov [10] (though he used notation x : T N T”)

Figure 1 gives the formation rules for these constructs,
and Figure 2 the algorithmic introduction and elimination
rules, showing also the syntax we use for their annotated
terms. The rules for implicit products (first row of Figure 2)
are essentially Miquel’s [15]. We use a minus sign to indicate
an erased argument. The rules for heterogeneous equality
are similar to McBride’s, except that we use some arbitrary
term f (A x. x, say) as the proof for true equations. CDLE’s
conversion rule allows changing a term #; to any fn-equal
t, of the same type, so using the introduction rule we can
inhabit the type t; ~ t,. Note, however, that in keeping with
our extrinsic viewpoint, the types of the terms are not actu-
ally part of the equality type itself, nor does the elimination
rule require that the types of the left- and right-hand sides
are the same to do an elimination. Only upon introduction
are the types required to be the same.

The remaining rules of Figure 2 are for introducing and
eliminating dependent intersections. These are similar to
the usual (nondependent) intersection types, except that in
1x:T.T’, the type T’ may contain x free, and hence substi-
tution of the subject of typing is required when considering
this second component of the intersection. This allows the
remarkable possibility to refer to a term ¢ in its own type
[t/x]T’, giving some form of self reference - albeit the refer-
ence x in T’ is required to be at some other type T. Note that
for introducing a dependent intersection, we require that the
two components are provably equal. We could alternatively
impose the stricter requirement that the erasures of the two
components are identical; we have confirmed that the results

Denis Firsov and Aaron Stump

Ix:T'"vT:% Trt:T TrE T
TrVYx:T.T:% F'rit=t :x

TrT:%x T,x:TrT :%x
F'tix:T.T : %

Figure 1. Formation rules for additional type constructs of
CDLE

Lx:T'vt:T x@FV(|t]) Tre:Vx:T'.T T+t :T
TrAx:T' .t :Vx:T'.T Trt —t': [¢//X]T

Trit ity =ty Fl—t:[tl/X]T
Trpt' — t:[t/x]T

Tret:T
F'rp:t=~t

I'rty: T l"l—tz:[t/x]T’ l"l—p:tlztz
T+ [tl,tz{p}] tux:T. T

Trtoux:T.T

F'rit:ux:T. T
I+t.2:[t/x]T’

T'ret1:T

Figure 2. Algorithmic introduction and elimination rules
for additional type constructs of CDLE

[Ax:T.t] = |t|
It —t'] = |t
1B = Ax.x
lpt =t = |t/
[[t1, 20p}]l = |t
[t.1] = |t
t.2] = |t

Figure 3. Erasures of annotations for implicit products, prim-
itive equality, and dependent intersections

of the paper still hold in this case. But the more flexible rule
simplifies some of the formalization below.

The rules in Figure 2 are all justified by a denotational
semantics for types, essentially that of [18] with a couple of
straightforward modifications. The erasures of the annotated
terms are given in Figure 3. We have implemented CDLE
in a tool called Cedille, which we have used to check all
the examples in this paper. A pre-release version for use
evaluating the artifacts referenced in this paper is here:

http://cs.uiowa.edu/~astump/cedille-prerelease.zip
All code referenced in this paper may be found here:

http://cs.uiowa.edu/~astump/papers/cpp2018-code.zip

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

208
209
210
211
212
213
214
215
216
217
218
219
220

http://cs.uiowa.edu/~astump/cedille-prerelease.zip
http://cs.uiowa.edu/~astump/papers/cpp2018-code.zip

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

258
259
260
261
262
263
264
265
266

268
269
270
271
272
273
274
275

Generic derivation of induction for impredicative encodings in Cedille CPP’18, January 08-09, 2018, Los Angeles, CA, USA

2.1 Deriving natural-number induction

It is well known that computationally, natural-number in-
duction can be reduced to iteration (cf. Section 2 of [8]). Let
us illustrate this informally. First define the type cNat of
Church-encoded natural numbers as usual:

cNat 4« x =V X : . X > X) > X —> X.

Let cZ and cS be the zero and successor constructors for this
type as usually defined. Then given predicate P : cNat — x,
base case b : P cZ, and step case

s : I x: cNat. P x = P (cS x)

we must try to inhabit IT n cNat.
standard syntax for dependent pair types ¥ x : A. B
(though these are not primitive in CDLE). Given n : cNat,
we apply nto ¥ x : cNat. P x (to instantiate the type
variable X in the definition of cNat), and then to (cZ,b) and
Ap. (¢S (my p) , s (mp p) (w2 p)). This constructs a
proof of P n by iterating the step case n times starting from
the base case. But crucially, at the end of this iteration, all
we have is an inhabitant of ¥ x : cNat. P x. We do not
know that the first component of the pair computed for n is
actually n. The identity of the n for which we have P n is
hidden by the existential abstraction (i.e., the 2-type).

As proposed by the second author [19], this problem can
be overcome in Cedille using dependent intersection types.
We first define a predicate expressing that a Church-encoded
natural number (cNat) is inductive:

P n. Let us use

Inductive € cNat — % =
A x : cNat. YV Q : cNat — x.

(V x : cNat. Q x = Q (cS x)) —

QcZ —

Q x.
Now we define the “true” type of natural numbers as de-
pendent intersection of cNat and predicate Inductive. Intu-
itively, Nat is a subset of cNat carved out by the inductivity
predicate:
Nat € x =1 x :
Moreover, this says that natural numbers are cNats which
are simultaneously their own proofs of inductiveness. This
builds on an observation of Leivant’s that under the Curry-
Howard isomorphism, proofs in second-order logic that data
satisfy their type laws can be seen as isomorphic to the
Church-encodings of those data [12]. Here, the data are al-
ready Church-encoded, and so they are isomorphic to the
proofs of their own inductiveness. We may then define the
constructors for Nat type:
Z «Nat =[cZ, AX. A\s. Az. z1].
S «4 Nat — Nat = A n.

LcSnd, AP. As. Az. s-n.1 (n.2P s z) 1.

So, if n is a natural of type Nat then it can be “viewed” as a
cNat by first component of intersection type n.1 and as a
proof that n. 1 is inductive by second component, namely
thatn.2 : Inductive n.1. Critically, as noted above, the

cNat. Inductive x.

components t1 and t2 of an introduction [t1,t2] of a de-
pendent intersection are required to have (provably) equal
erasures, a requirement we refer to generally as alignment.
Since this requirement is satisfied in the definitions for Z and
S then it also justifies that erasure of n.1 and n.2 is n and
therefore n.1 =~ n.2 for any natural n.

Given the above definitions, we may then inhabit the fol-
lowing type for induction:

Y Q : Nat —» % .

(Wx :Nat. Qx > Q(Sx)) »-Q2Z—

IT x : Nat. Q x
The derivation uses x. 2 with the following predicate:
A x : cNat. ¥ x' : Nat. (x = x'.1 x Q x')
This says that we will prove by induction on cNat x that
there exists an x' Nat, a proof that x equals x' (since
x".1 erases to x'), and a proof of Q x'. This is easily done
based on the strategy at the start of this section. The crucial
innovation allowing this strategy to go through is using
dependent intersection for the definition of Nat, and using
equality to connect the x that is eliminated with the x' that
is constructed. For a more leisurely consideration of this
derivation, see [19].

3 Encodings of inductive types

In this section we review the standard material on impred-
icative encodings of inductive datatypes [17, 23]. We also
compare the Church and Mendler-style encodings.

For this and all the following sections we assume the
following global parameters:

1. A functor F kinded as x — *.
2. A function fmap associated with F:

fmap « VX : *.VY:*%x. X>Y) oDFX—>FY

3. The standard laws of identity and composition for
fmap.

Also we adopt some syntactical simplifications to improve
readability. In particular, we hide the implicit (erased) ar-
guments in the definitions. For example the arguments X
and Y in the definition of fmap are quantified implicitly,
so we write fmap mw; instead of fully annotated version
fmap (X A B) A (n; A B). The current version of Cedille
language requires fully annotated terms.

It is important not to confuse the implicit arguments in
the sense of Implicit Calculus of Constructions and “hidden”
arguments as in languages like Agda and Coq. For example,
in Agda the identity function has one implicit argument
id : {A : Set} - A > A
This argument may be omitted when the typechecker can
infer it, e.g. id zero. In Cedille, the implicit arguments are
ones which exist just for purposes of typing, so that equa-

tional reasoning happens on terms from which the implicit
arguments have been erased (see Figure 3).

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

CPP’18, January 08-09, 2018, Los Angeles, CA, USA

3.1 Church-style inductive types

In categorical parlance, given an endofunctor F the conven-
tional (Church-style) F-algebra is a pair of object X (carrier)
and an arrow F X — X (recall that F is a global parameter):

AlgC € *x > x = A X : %x. F X - X.

These form a category, where an arrow between (X, f) and
(X',f") is given by a homomorphism h : X — X' such
thatV v : F X. f' (fmap h v) =~ h (f v).

The inductive type induced by the least fixed point of F
is usually modelled as a carrier of the initial object in the
category of F-algebras. We follow this definition in three
steps. First, we define a carrier of initial F-algebra (which in
our case is a type):

FixC € x =V X : . AlgC X — X.

Second, initiality tells that there must be a (unique) homo-
morphism from the initial one to any other F-algebra. In
Cedille, this translates into a function which for an algebra
AlgC X returns a function from FixC to X:

foldC €« ¥V X : *. AlgC X — FixC — X
=Xa. Av. vV a.

Lastly, the arrow of the initial F-algebra is function inC from
F FixC to FixC, which denotes the collection of constructor
functions for inductive datatype FixC.

inC « AlgC FixC
= A fix. A alg. alg (fmap (foldC alg) fix).

For every F-algebra f' : AlgC X' the function foldC f'
is indeed a homomorphism:

HomC « V X' : %. IT f' : AlgC X'. IT v : F FixC.
f' (fmap (foldC f') v) =~ foldC f' (inC v)
=X f'. Av. B
The equality follows simply by beta-eta reduction. Since we
do not have a dependent elimination for FixC then we cannot
prove that foldC f' is a unique homomorphism (modulo
extensionality). As a result, FixC and inC form only a weakly
initial F-algebra.

Categorically, one can prove Lambek’s lemma, which states
that every initial F-algebra is an isomorphism. The lemma
justifies that the carrier of the initial algebra (FixC) is a least
fixed point of the functor. Unfortunately, absence of depen-
dent elimination (induction rule) prevents us from proving
that inC AlgC FixC is initial and hence the proof of
the Lambek’s lemma fails. We will correct this in Section 4
below.

Let us look at the example of natural numbers in terms
of above definitions. Natural numbers arise as a least fixed
point of functor NatF:

NatF € * — % = A X : %. Sum Unit X.

natFmap « V. X : . VY : x. (X = Y)
— NatF X — NatF Y = A f. A nf.
case nf (A unit. in1 unit)

Denis Firsov and Aaron Stump

(\ x. in2 (f x)).

NatF X is a disjoint sum of singleton type Unit and X (in1
and in2 are left and right injections of the disjoint sum). We
instantiate the global functor parameter F with NatF and
fmap with natFmap. Natural numbers are then the least fixed
point of NatF:

NatC <« * = FixC.

To define the usual constructors of natural numbers we first
create the values of type NatF NatC and then use function
inC to “inject” them into NatC:

zeroC « NatC = inC (in1 unit).

sucC <« NatC — NatC = A n. inC (in2 n).

3.2 Mendler-style inductive types

The categorical model of Mendler-style inductive types is
more involved than the conventional one. A Mendler-style
F-algebra for an endofunctor F : C — C is a pair (X, ®) so
that X is an objectin C and ® : C(—,X) — C(F —, X) is a
natural transformation [22]. In Cedille, this translates into a
polymorphic function:

AlgM €4 * = *x = A X : *.
YVR:*x. (R—>X) > FR —> X.

Similarly to the Church-style, Mendler-style F-algebras form
a category and the inductive type induced by a signature
functor F is modelled by the carrier of the initial object in
this category. In our case, the object is a type defined as a
Mendler-style least fixed point:

FixM € x =V X : . AlgM X — X.
As before, folding the value of FixM with an algebra AlgM X

gives the homomorphism from FixM to X:

foldM €« V X : %x. AlgM X — FixM — X

= A alg. A fix. fix alg.

In Cedille, the arrow of (weakly) initial Mendler-style F-
algebra is a polymorphic function inM:

inM <« AlgM FixM = A c. A v. A alg.

alg (foldM alg) (fmap c v).

As in case of inC, the purpose of inM is to define construc-
tor functions for the carrier type. The example of natural
numbers encoded in Mendler-style looks very similar to the
Church-style approach.

NatM « % = FixM.
zeroM « NatM = inM (A x. x) (in1 unit).

sucM <« NatM — NatM = A n. inM (A x. x) (in2 n).

In the example above, the argument R is implicitly instanti-
ated with NatM so that inM (A x. x) : F NatM — NatM
is a Church-style F-algebra.

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

438
439
440

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

478
479
480
481
482
483
484
485
486

488
489
490
491
492
493
494
495

Generic derivation of induction for impredicative encodings in Cedille CPP’18, January 08-09, 2018, Los Angeles, CA, USA

3.3 Comparison of approaches

As it is common to normalizing languages based on poly-
morphic lambda calculus, Cedille does not allow explicit
recursive calls. Instead, recursive calls are encoded by means
of impredicative polymorphism.

The core difference of Church-style and Mendler-style
F-algebras is in how they encode the recursive calls. Let us
exhibit the difference by defining the function even for NatC
and NatM. In both cases we fold the input with an appropriate
algebra.

evenC « NatC — Bool = foldC evenAlgC.

evenM « NatM — Bool = foldM evenAlgM.

The Church-style algebra is essentially a function of type
NatF Bool — Bool. We must think of its argument
NatF Bool as a collection of constructors of NatC which en-
capsulate the result of a recursive call of evenC on a previous
natural number (below denoted by b).

evenAlgC <« AlgC Bool = A fn.
case fn (A _ . true)
(A b . not b).

% zero case
% suc case

The Mendler-style NatF-algebra is a polymorphic function of
typeV R : *. (R = Bool) — NatF R — Bool.Itallows
to state the recursive calls explicitly by providing arguments
R — Bool and NatF R. One can think of universally quan-
tified R as NatM in disguise and the argument R — Bool is
the function evenM in disguise. The polymorphic R ensures
that recursive calls will be made on only the previous natural
number (which ensures termination; cf. [1]).

evenAlgM <« AlgM Bool = A rec. A\ fr.
case fr (A _. true) % zero case
(A r. not (rec r)). % suc case

Delaware et al. explain that the explicit control over the re-
cursive calls make the Mendler-style algebras behave reason-
ably in both lazy and strict environments. At the same time
they show that the lack of control over the recursive calls
in Church-style algebras leads to performance drawbacks in
strict environments and subtle issues in lazy environments
[2, 4].

In fact, Mendler-style and Church-style algebras are inter-
convertible:

caZzma €4 VY X : x. AlgC X — AlgM X
= A algC. A f. A fr. algC (fmap f fr).

ma2ca €4 VY X : *x. AlgM X — AlgC X
= A\ algM. A fx. algM (A x. x) fx.

Hence, FixC and FixM are interconvertible as well. Moreover,
these types are isomorphic, but we cannot formally prove
that without induction.

4 Induction principle

The goal of this section is to employ dependent intersec-
tion types to define inductive types for which the induction
principle is provable.

4.1 Induction for Mendler-style types

In this section, our goal is to define a type which will rep-
resent a subset of FixM for which the induction principle
is derivable. We define the subset as an intersection type
of FixM with the “inductivity” predicate on it. Also, we are
constrained by an introduction rule of the intersection types,
which requires that the terms involved in an intersection
have the same erasures (see Figure 2). To satisfy this condi-
tion we express the inductivity for FixM as a “dependently-
typed” version of FixM. Recall, that FixM is defined in terms
of Mendler-style algebra:

AlgM € * > x* = A X : *x. YR : *.

(R—>X) > FR > X.

FixM € *x =V X : x. AlgM X — X.

Hence, we start by introducing the dependent version of
Mendler algebra, a Q-proof F-algebra, which is parameterized
by an algebra and the predicate on its carrier. (Note that our
notion of proof algebra differs from that of [4].) But first, to
aid the reader, here is an overview of the central concepts
that will be defined below:

e PrfAlgM — a dependently typed version of AlgM, but
with some extra explicit arguments that may be help-
ful for users of induction (but hinder alignment with
AlgM).

e PrfAlgM' - like PrfAlgM but with those arguments
made implicit (and so not obstructing alignment with
AlgM); this version is used internally in the develop-
ment of induction, but we will see at the end of the
section how to return to PrfAlgM.

e IsIndFixM — a predicate stating that an element of
type FixM satisfies induction for predicates on FixM. In-
duction here is phrased using the function inM (which
denotes the constructors of FixM).

e FixIndM — the subset of FixM satisfying IsIndFixM;
this is the type for which we prove induction.

e IsIndFixIndM - a predicate stating that an element of
FixIndM satisfies induction for predicates on FixIndM.
Induction is phrased using the function inFixIndM,
which denotes the constructors of FixIndM.

e allIndFixIndM - the proof that every element of type
FixIndM indeed satisfies the predicate IsIndFixIndM.
Deriving this is the main result of this section.

To return to proof algebras: as we saw above (Section 3.2),
a Mendler-style F-algebra provides a function to make ex-
plicit recursive calls. Correspondingly, we define proof alge-
bras to provide a function to use for explicitly invoking the
inductive hypothesis. Therefore, the inductive hypothesis

496

547
548
549
550

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

CPP’18, January 08-09, 2018, Los Angeles, CA, USA

is a dependent function of type IT r : R. Q (cast r),
where cast converts polymorphic R to X. For the inductive
hypothesis to be strong enough, cast must not change the
value it is being applied to.

PrfAlgM €« II X : . (X » %) — AlgM X — %
=AX:x. AQ: X > x. \alg : AlgM X.
VR : %. Il cast : R — X.
II _:Vr:R. castr=r.
(ITr : R. Q (cast r)) —
II fr : FR. Q (alg cast fr).

Given the inductive hypothesis for every R, the proof algebra
must conclude that alg cast fr satisfies Q. Since PrfAlgM
has more explicit parameters than AlgM, the erasures of their
values can never be the same (align)—this will prevent us
from defining the inductive subset of FixM as intersection
type. For that reason we give an alternative definition of
proof algebra so that the function cast and the proof that it
is identity function are implicit:

PrfAlgM' €« II X : . (X > %) — AlgM X — %

=AX:x. AQ: X > x. \alg : AlgM X.
VR : *%x. Vcast : R - X.
YV_:Vr:R. castr~r.

(IT'r : R. Q (cast r)) —

II fr : FR. Q (alg R cast fr).

Implicitly quantified cast might appear as a restriction on
derivation of Q (alg cast fr). However, later we will
observe that both types of algebras are equivalent in the
context of induction rule.

Next, to stay close to the definition of FixM we say that the
value of x : FixMis inductive if a Q-proof algebra implies
Q x:

IsIndFixM « FixM — % = A x :

Y Q : FixM —» x.

PrfAlgM' FixM Q inM — Q x.
If x satisfies IsIndFixM then to show that the particular x
satisfies Q it is enough to do a proof by induction—prove
that for any fr : F R we can conclude Q (inM cast fr)
given the premise that every r : R satisfies Q (cast r)
andcast r = r.

It is crucially important to maintain a similarity in the

definition of FixM and the inductivity predicate IsIndFixM.
FixM = AlgM X - X.
IsIndFixM x = PrfAlgM' FixM Q inM — Q x.
The analogy of definitions allows to internalize the fact that
induction can be reduced to iteration. Namely, that the in-
ductive value x FixM and the proof that x is inductive
(IsIndFixM x) could be represented by terms with equal
erasures—the property which is required by introduction
rule of intersection types.

Let us then define the inductive subset of FixM as a depen-
dent intersection of FixM and predicate IsIndFixM:

FixIndM €4 % = ¢ x : FixM. IsIndFixM x.

FixM.

Denis Firsov and Aaron Stump

Similarly to the function inM, the function inFixIndM con-
structs the values of FixIndM from polymorphicR : %, func-
tionf : R — FixIndM, and value fr : F R.The implemen-
tation combines these arguments into value v : F FixIndM
by mapping f over fr:

inFixIndM <« AlgM FixIndM
=Af. A fr. let v="Ffmap f fr in
[tml v, tm2 v { eqm v } 1.

Then the resulting value FixIndMis an intersection of tm1 v
and tm2 v. The first component of intersection must be a
value of FixM derived from F FixIndM in terms of previously
defined function inM.

tml <« F FixIndM — FixM
= Av. inM (A x. x) (fmap (A x. x.1) V).

The second component (tm2 v) is a proof that every tm1 v
is inductive:

tm2 €4 II v : F FixIndM. IsIndFixM (tml v)
=Av. AQ. Aqg. q.2 FixIndM

-(Az. z.1) -(Ar. B)

(Ar. r.2Q0q)

(fmap FixIndM FixIndM (A x. Xx) V).

(For better intuition the implicit arguments are shown.)
Now let us look at the unfolded erasures of tm1 and tm2

tml =Av. Agq. g (Ar. (rq)
(fmap (A x. x) (fmap (A x. Xx) Vv))
tm2 =Av. Ag. g (Ar. (rg))(fmap (A x. xX) v)

The third component of intersection (eqm v) proves that
erasures of tm1 and tm2 are equal by applying the identity
law of F.

Now we can turn our attention to the derivation of induc-
tion for FixIndM. Similarly to FixM, the value of x : FixIndM
is inductive if we can derive Q x from the respective proof
algebra (note a similarity of IsIndFixM and IsIndFixIndM).

IsIndFixIndM « FixIndM — x
= A X : FixIndM. V Q : FixIndM — x.
PrfAlgM' FixIndM Q inFixIndM — Q x.

Our goal is to prove that all FixIndM are inductive in this
sense. Note that since the predicate Q ranges over FixIndM
instead of FixM (as in IsIndFixM), we cannot simply use
the form of inductivity for x. 1 arising from x : FixIndM
(namely, x.2 : IsIndFixM x.1) as a proof of inductivity
of x itself (namely, IsIndFixIndM x).

Let us start the derivation by assuming the existence of a
predicate Y : FixM — % with the property that Y x.1 im-
plies Q x for any x. Then we can reduce the derivation of Q x
toY x.1andproveY x.1 by using the fact that x. 1 is induc-
tive. However, to do that we must convert a proof algebra of
FixIndM to a proof algebra of FixM. In other words, we need
a function from PrfAlgM' FixIndM Qto PrfAlgM' FixM Y.
For that purpose we also need an implication from Q x to
Y x.1.The most important part of the derivation is to show

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
7

3
7

—
S

715

Generic derivation of induction for impredicative encodings in Cedille CPP’18, January 08-09, 2018, Los Angeles, CA, USA

how to convert a predicate on FixIndM to a predicate on
FixM satisfying both the above properties:

WithWitness € II X : x. IT Y : .
X> %) > X>Y) >Y > %
=AX:*x. AY : x. AQ : X = .
Acast : X > Y. Ay : V.
X x @ X. (x @ cast y) X Q x.

WithFixIndM « (FixIndM — %) — %

= A Q : FixIndM — x.

WithWitness FixIndM FixM Q (A x. x.1).

The predicate WithWitness X Y Q cast is satisfied by value
y : Y iff there exists a value x : X so that Q x holds and
x = cast y. Therefore, the predicate WithFixIndM Q is sat-
isfied by valuey : FixMiff there exists a value x : FixIndM
so thatQ x holdsand x =~ y.1. The key role in this definition
is played by heterogeneous equality on erasures. Since the
erasure of y. 1 is y then the equality x ~ y.1 is equivalent
to x = y. Hence, it becomes easy to verify that Q e holds iff
WithFixIndM Q e.1 does.

propl « II e : FixIndM. V Q : FixIndM — x.
Q e —» WithFixIndM Q e.1 = <..>.

prop2 « II e : FixIndM. V Q : FixIndM — x.
WithFixIndM Q e.1 — Q e = <..>.

conviIH €« V Q : FixIndM — .
PrfAlgM' FixIndM Q inFixIndM —
PrfAlgM' FixM (WithFixIndM Q) inM
= <..>.

(convIH is implemented in terms of prop1 and prop2.)
This is enough to show that all FixIndM are inductive:

allIndFixIndM « IT x : FixIndM. IsIndFixIndM x.
= A x. A algQ. propl x (x.2 (convIH x algQ)).

Unfolding the definition of IsIndFixIndM, we may rear-
range premises in the above statement to highlight that any
Q-proof algebra implies that Q holds for every FixIndM.

inductionM' €« V¥V Q : FixIndM — x.
PrfAlgM' FixIndM Q inFixIndM —

II x : FixIndM. Q x

= A algQ. A x. allIndFixIndM x algQ.

Recall that we designed PrfAlgM' to align with AlgM. Since
PrfAlgM has more explicit parameters, it is more convenient
for the user to define. In the context of the induction rule
the original PrfAlgM is equivalent to PrfAlgM'. The cen-
tral idea is that proof algebra PrfAlgM' for lifted predicate
WithWitness X X Q (A x. Xx) is equivalent to PrfAlgM
for Q. But since lifted Q is logically equivalent to Q then we
can state the final version of induction in terms of original
“strong” proof algebra PrfAlgM:

inductionM €4 ¥V Q : FixIndM — x.
PrfAlgM FixIndM Q inFixIndM —

II x : FixIndM. Q x = <..>.

4.2 Induction for Church-style types

Similarly to the previous section, our goal is to define a type
which will represent a subset of FixC for which the induction
principle is derivable. We define this subset as an intersection
type of FixC with the “inductivity” predicate IsIndFixC. As
before, the erasures of x : FixC and IsIndFixC x must
align. We define IsIndFixC by following the definition of
FixC:

AlgC € *x > x = A X : %x. F X - X.

FixC € x =V X : . AlgC X — X.

The first question is how to define the dependent version of
Church-style algebra. The main difficulty of this task is in
expressing the inductive hypothesis. The immediate idea is
to use dependent product of type 3 X Q. In other words, we
pair the values of X and proofs that they satisfy Q. Then the Q-
proof algebra is simply a dependent function from inductive
hypothesisx : F (X X Q) toQ (alg (fmap m; x)):
PrfAlgC €« II X : . (X » %) — AlgC X —> %
=AX: *%. AQ: X > x. A alg : AlgC X.
II ih : F (32 X Q). Q (alg (fmap m; ih)).
FixC is inductive if given a Q-proof algebra we can conclude
that it satisfies Q (analogously to the definition of FixC):

IsIndFixC <« FixC — % = A x : FixC.
Y Q : FixC —» %. PrfAlgC FixC Q inC — Q x.

The inductive subset of FixC consists of values which satisfy
IsIndFixC:

FixIndC € * = x : FixC. IsIndFixC x.

Next, we implement a function for constructing the values
of FixIndC from F FixIndC:

inFixIndC <« AlgC FixIndC
=Av. [tclv, tc2v {eqcv }].
The function tc1 must convert F FixIndC to FixC. Since F

is a functor and we already defined function inC then tm1 is
implemented in terms of it:

tcl €4 F FixIndC — FixC =
A v. inC (fmap (A x. x.1) V).

The function tc2 must prove that every tc1 v is inductive:

tc2 €4 II v : F FixIndC. IsIndFixC (tcl v)
=Av. A Q. XAk. k (fmap FixIndC (X FixC Q)
(A g . sigma 9.1 (q.2 Q k)) v).
To finalize the definition of inFixIndC we must show that
the erasure of tc1 and tc2 are the same. Unfortunately, this
is not the case. The fully unfolded and erased terms look as
follows:
tcl v = X k. k (fmap (A q. q k)
(fmap (A x. x) Vv))
A k. k (fmap (A g. A c. (c g (g k))) v)

tc2 v

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748

750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768

770

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

CPP’18, January 08-09, 2018, Los Angeles, CA, USA

The variable q in the erasure of tc1 represents the value
of FixC and value k represents the F-algebra. Hence, q k
delivers a recursive call (g k =~ foldC k q). The vari-
able q in the erasure of tc2 represents the value of FixIndC
and k represents the proof algebra. Hence, q k delivers the
inductive hypothesis Q g (9.2 Q k =~ g k). Since the
value of Q q depends on q, the sigma type is being created
(sigma g.1 (9.2 Q k) = A c. ¢ q (g k)).

The problem is that the F-algebra and proof algebra differ
in the representation of recursive call and representation of
inductive hypothesis. The recursive call is simply a value X
while the inductive hypothesis is a dependent pair ¥ X Q.
To force the equality between the erasures of tc1 and tc2
we must adjust the algebras. To achieve that we wrap the
recursive call into unary product and use a “weak” sigma
type for the inductive hypothesis in the proof algebra. The
definition of unary product is simple:

Unary € * — %
=AA: x. VX : % (A>X) - X.
unary 4 ¥ X : %x. X — Unary X
=AX. Ax. AY. Ac. c a.

The weak sigma type represents the “dependent” version
of unary product. In other words, one can think of WX as
usual sigma type but with the first projection being implicit
(erased).

WYy « IT A @ % .
=ANA: %x. A\B:
VX : %x. (VMa:

(A > %) > %

A — *.

A. Ba—- X)) —» X.
wsigma € V X : *x. VY : X > *.
VXx:X.¥Yx > W2XY

=AX. AY. Ax. Ay. AZ. Ac. c-xy.

Observe, that erasure of wsigmaisequaltoA a. A c. c a
which is the same as the erasure of unary. Hence, if we wrap
the recursive call into unary product unary (foldC k q)
and wrap the inductive hypothesis into weak sigma type
wsigma -q.1 (q.2 Q k) then the erasures will be equal
toA c. ¢ (g k) in both cases and we can fix the problem
with alignment described above.

Unfortunately, in general case it is impossible to imple-
ment projection functions from WX A B. We can implement
both projections for the special case WX A (WWId A B),
where WWId lifts the predicate B to the logically equivalent
one that also stores the witness A:

WAWId « IT X : . (X > %) > X > % =
AX: %, AQ: X > %. WithWitness X X Q (A x. x).

wsPrjl « VX : x. VY : X > %.
WY X (WWId X Y) —» X = <..>.

(The definition of WWId is given in the previous section.)
Now, to guarantee the alignment of algebras we can redefine

Denis Firsov and Aaron Stump

Church F-algebra in terms of Unary and proof algebra in
terms of WX X (WWId X Q):

AlgC' €4 (k > %) > *x > % =

AMF : % > x. A X : x. F (Unary X) — X.

PrfAlgC' € II X : *x. (X > %) — AlgC' X — %
=AX: %, AQ: X —> %x. A alg : AlgC' X.
II ih : F (WX X (WWId X Q)).
(WWId X Q)
(alg (fmap (A x. unary (wsPrjl x) ih)).

(The predicate IsIndFixC must be adjusted to PrfAlgC')
By using the adjusted definitions of algebras we developed
functions tc1' and tc2' so that their erasures are equal.

tc1'«4 F (Unary FixIndC) — FixC = <..>.

tc2'«a Il v :
= <..>.

F (Unary FixIndC). IsIndFixC (tcl1' v)

Then it becomes possible to implement a function:
inFixIndC' <« AlgC' FixIndC = <..>.

Since Unary X is isomorphic to X then we get previously
desired AlgC FixIndC:
inFixIndC <« AlgC FixIndC = <..>.

Next, by following exactly the same steps as in the previ-

ous section we derive the induction principle for the lifted
predicates WWId FixIndC Q:

inductionC' €4 V Q : FixIndC — x.

PrfAlgC' FixIndC Q inFixIndC' —

II x : FixIndC. WWId FixIndC Q x

= <..>.
Observe that WId FixIndC Q is logically equivalent to Q,
Unary X is isomorphic to X, and (WX X (WWId X Q)) is
isomorphic to ¥ X Q. Therefore, we can state the induction
principle in terms of the original tidier definition of proof
algebra PrfAlgC:
inductionC €« ¥V Q : FixIndC — x.

PrfAlgC FixIndC Q inFixIndC —

II x : FixIndC. Q x = <..>.

4.3 Discussion

We discovered that it was simpler to derive the generic in-
duction rule in Mendler-style than in Church-style. Recall,
that the Church-style F-algebras provide access to the results
of recursive calls. By analogy, the Church-style proof algebra
must provide access to the results of the invocation of the
inductive hypothesis on "previous” elements. This inevitably
couples these elements with proofs that they satisfy a prop-
erty. The coupling between elements and proofs in proof
algebras hinders alignment with F-algebras. To overcome
this issue we adjusted both algebras by wrapping the results
of recursive calls in unary product and using specifically
tuned "weak" sigma types for representation of inductive
hypothesis.

826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

933
934
935

Generic derivation of induction for impredicative encodings in Cedille CPP’18, January 08-09, 2018, Los Angeles, CA, USA

The derivation of induction for Mendler-style datatypes
is simpler. Recall, that Mendler-style algebras allow the ex-
plicit recursive calls by providing the function R — X and
elements of F R, where R is a polymorphic type. Analo-
gously, a Mendler-style proof algebra expresses its inductive
hypothesis on elements of F R as a dependent function
IT r : R. Q (cast r), where cast is an implicit identity
function from R to X. Therefore proof algebras perfectly align
with the respective F-algebras.

The unexpected aspect of our derivation of induction is
that in Mendler-style it only relies on the first functor law.
We plan to investigate this aspect further to find if it broadens
the class of definable datatypes.

5 Properties

In this section we show that the inductive datatypes defined
by our generic development are well-behaved and satisfy
the expected properties. The same set of properties holds for
both encodings.

5.1 Initiality

FixIndM is a weakly initial Mendler-style F-algebra since
there is an algebra homomorphism from it to any other
algebra.

foldIndM €« V X : %x. AlgM X — FixIndM — X
= A\ alg. A fix. foldM alg fix.1.

To show that FixIndM is initial we must prove that given
an algebra k : AlgM X the homomorphism foldIndM k is
unique (modulo extensionality). This is known as universal
property of folds [9]:
universal' « II A : . IT h :
IT algM : AlgM A.

(IT'y : F FixIndM.

h (inFixIndM (A x. x) y) =~ algM hy) —

IT x : FixIndM. h x =~ foldIndM algM x = <..>.

The proof of the above lemma does not succeed because
there are two ways of “using” Mendler style F-algebra. First,
we can specify R to A and then construct the value of A as
follows: algM A (A x. x) (fmap h e). The second
possibility is to specify R to FixIndM and then construct the
same value differently—algM FixIndM h e.In a categorical
setting the equality of both values follows from naturality
conditions on algM [22]. In Cedille, we cannot prove that all
Mendler-style F-algebras are natural. Instead, we define a
predicate:

Natural €« IT A : x. AlgM A —> x =

AA %, Ak algM : AlgM A.

YVR: *x. Vf:R—>A. VYV fr:FR.
algM f fr ~ algM (A x. x) (fmap f fr).

(Church encodings do not require any extra assumptions.)
Now, if we assume that the given algebra is natural then we
can prove universality of foldIndM by induction:

FixIndM — A.

universalM « II A : % . II h : FixIndM — A.
II algM : AlgM A. Natural algM —
(Il 'y : F FixIndM.
h (inFixIndM (A x. x) y) =~ algM h y) —
II x : FixIndM. h x = foldIndM algM x = <..>.

This property justifies that FixIndM and inFixIndM form an
initial Mendler-style F-algebra.

5.2 Reflection, cancellation, and fusion

The three best-known consequences of initiality are the re-
flection, cancellation, and fusion laws.

The reflection property states that folding the value with
its constructors does not change it:

reflectionM « II x : FixIndM.
foldIndM inFixIndM x =~ x = <..>.

Reflection is a direct consequence of previously proved ini-
tiality. Since inFixIndMis natural and foldIndM inFixIndM
is an F-algebra homomorphism from FixIndM to FixIndM
then it must be the identity homomorphism.

The cancellation property can be viewed as the reduction
rule where the fold is applied to a data constructor. The
reduction recursively replaces the constructors of FixIndM
with given F-algebra.

cancellationM <« V A : *.

II algM : AlgM A. Natural A algM —

II x : F FixIndM.

foldIndM algM (inFixIndM (A x. x) x) =
algM (foldIndM algM) x = <..>.

The fusion law describes the composition of fold with
another function. It gives conditions under which the inter-
mediate values produced by folding can be eliminated.

fusionM €« ¥V C : x. V D : %.
IImf:Cc—-D.
II algl : AlgM C. Natural C algl —

II alg2 : AlgM D. Natural D alg2 —
(Il'y : FC.

f (algl (A x. x) y)
II x : FixIndM.

f (foldIndM algl x)
= <..>.

1R

alg2 f y) —»

R

foldIndM alg2 x

5.3 Lambek’s lemma

Lambek’s lemma establishes that if uF and in : F uF — uF
form an initial F-algebra then in is an isomorphism with
inverse being fold (fmap in) [11]. In this section we for-
malize the Lambek’s lemma for Mendler-style types. In par-
ticular we show that FixIndM is isomorphic to F FixIndM
(same holds for FixIndC). The proof becomes possible due
to derived initiality (which itself depends on induction prin-
ciple).

To start with we convert the initial Mendler-style F-algebra
to the Church-style F-algebra:

936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953

955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976

978
979
980
981
982
983
984
985
986

988
989
990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

CPP’18, January 08-09, 2018, Los Angeles, CA, USA

inFixIndM' « F FixIndM — FixIndM
= ma2ca inFixIndM.

As mentioned previously, the categorical model of inductive
types gives the exact recipe on how to implement the inverse
of inFixIndM', namely:

outFixIndM <« FixIndM — F FixIndM
= foldIndM (fmap inFixIndM').

We show that it is a pre-inverse:

inoutM « II x : FixIndM.
inFixIndM' (outFixIndM x) = x = <..>.
Definitionally, inFixIndM' (outFixIndM x) is equal to
inFixIndM' (foldIndM (fmap inFixIndM') x), there-
fore, by fusion law it is equal to foldIndM inFixIndM x
which by reflection law is x.
The function outFixIndMis also a post-inverse:
outinM « II x : F FixIndM.
outFixIndM (inFixIndM' x) =~ x
Since, FixIndM is isomorphic to F FixIndM then we are
justified in calling it a fixed point of F. Initiality justifies in
calling it a least fixed point.

= <..>.

5.4 Isomorphism of encodings

In this section, we show that Church-style and Mendler-
style encodings are isomorphic. Recall, that in Section 3.3 we
discussed how to convert between Church and Mendler-style
algebras (functions ca2ma and ma2ca). Hence, to convert
between encodings of fixed points we must fold the original
value with the constructors (initial algebras) of the target
encoding:

c2m « FixIndC — FixIndM

= foldIndC (ca2ma inFixIndM).

m2c « FixIndM — FixIndC

= foldIndM (ma2ca inFixIndC).
The composition of c2m with m2c is an F-algebra homomor-
phism from FixIndM to FixIndM. Therefore, by initiality and
reflection property of FixIndM it must be the identity homo-
morphism:

isoM «4 IT x : FixIndM. c2m (m2c x) = x

The same reasoning applies for the opposite direction:
isoC « IT x : FixIndC. m2c (c2m x) =~ x = <..>.

=<..>.

6 Examples

We instantiate the generic development for natural numbers
and polymorphic lists.

6.1 Natural numbers

In Section 2.1 we showed a specific definition of natural
numbers and derivation of induction principle for it. Let us
list the main steps we took:

1. Defining the “simply” typed natural numbers cNat.

10

Denis Firsov and Aaron Stump

2. Implementing constructors cZ and cS for cNat.

3. Defining the inductivity predicate Inductive in terms
of constructor functions cZ and cS.

4. Defining the inductive subset of cNat as intersection
type of cNat and Inductive.

5. Implementing the constructors Z and S for Nat.

6. Stating and deriving induction for Nat.

The definition of inductive datatypes in terms of discussed
generic development allows to derive most of these steps
automatically.

As was mentioned previously, natural numbers arise as a
least fixed point of functor NatF:

NatF € * — % = A X : % . Sum Unit X.

So, to define a natural numbers we must instantiate the func-
tor F of generic development with NatF, fmap with natFmap,
and prove the functor laws. Then we define Church-style
natural numbers as a least fixed point of NatF:

Nat <« * = FixIndC.

Even before we defined the usual constructors of Nat the
generic development provides the induction rule inductionC
for Nat (the Church-style proof algebra argument is un-
folded):
inductionNatGen €« V Q : Nat — .

(IT ih : F (X Nat Q).

Q (inFixIndC (fmap m; ih))) —

II x : Nat. Q x = inductionC.
After defining usual constructors for Nat we can derive the
equivalent “flat” version of induction rule:

zero « Nat = inFixIndC (in1 unit).

suc <€ Nat — Nat = A n. inFixIndC (in2 n).
inductionNat €« V Q : Nat — .

Q zero » (I n : Nat. Q n —» Q (suc n)) —
II x : Nat. Q x =X gz. A gs. A x.
inductionNatGen (A ih. case ih

(A u'. p (eta-unit u') - qz)
(A b. as (m b) (m2 b)))

X.

% zero case
% suc case

In zero case we use the fact (eta-unit) that type Unit has the
unique inhabitant unit, so the goal is rewritten by equation

u' =~ unit.

6.2 Lists

In this section we use Mendler-style encoding to define poly-
morphic lists. Lists of elements of type A arise as a least fixed
point of functor ListF A:

ListF € * & % = % = A A : *.

Sum Unit (Product A X).

We skip the obvious proofs that ListF A is a functor which
satisfies the required laws. Since ListF is a family of func-
tors then we must parametrize the combinators of generic

A X ook

1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

Generic derivation of induction for impredicative encodings in Cedille CPP’18, January 08-09, 2018, Los Angeles, CA, USA

development explicity depending on A. Then List A is
FixIndM (ListF A) (fmap A) (lawl A) (law2 A).
However, for the readability purposes we only write the first
argument:

List € *x > * = A A : %. FixIndM (ListF A).

The previously developed function inductionMimmediately
provides the generic induction principle for List A (the
proof algebra argument is unfolded):

inductionListGen €« V A : x.
(VR : x. IT cast : R — List A.
II :¥Yr :R.castr =r.

(II'r : R. Q (cast r)) —
II fr : (ListF A) R. Q (inFixIndM cast fr)) —
Il e : List A. Q e = <..>.

We define constructors and the flat version of induction rule:

nil €« V A : x. List A
= inFixIndM (A x. x) (inl1 unit).

cons 4« Y A : x. A > List A - List A
= A X. A xs. inFixIndM (A x. x) (in2 (pair x xs)).

inductionListM « YV A : x. ¥V Q : List A —> x.

Q nil —

(IT x : A. IT xs : List A. Q xs = Q (cons x xs)) —
IT xs : List A. Q xs = A gnil. A qcons.

inductionListGen (A cast. A eq. A ih. A fr.
case fr
(M unit'. p (eta-Unit unit') - gnil) % zero case
(A p. (gcons (m; p) % suc case
(cast (w2 p))
(ih (m2 PN
Notice that in the successor case the inductive hypothesis
Q (cast (my p)) is produced explicitly by invoking func-
tionih : I r : R > Q (cast r).

7 Related work

Swierstra showed how to solve the famous expression prob-
lem stated by Wadler [24]. His technique allows to assem-
ble datatypes and functions from isolated individual com-
ponents [20]. The key idea is to define datatypes as fixed
points of a functor. Most importantly, he observes that if F
and F' are functors then the pointwise coproduct F :+: F
is also a functor. This allows to modularly derive function
Fix (F :+: F') — Xfromindependently defined functions
Fix F — XandFix F'

Delaware et al. extend the idea of Swierstra to modular
proofs [4]. They develop an approach to deriving induction
for impredicative encodings based on universal property of
folds. The valuev : Fix Fisuniversalifh v ~ fold alg v
for any algebra alg and homomorphism h. Then, it is shown
how to derive the induction principle for values which sat-
isfy universality. The induction principle allows to derive

- X.

11

properties for Fix (F :+: F') from properties of Fix F and
Fix F'. Also, it is important to note that proof of induction
relies on functional extensionality. Our approach does not
require extra axioms or assumptions.

Initially, the Coq proof assistant was based on the Calculus
of Constructions. It also used the impredicative encodings
to model inductive datatypes [17]. The induction principles
for those encodings were added axiomatically which endan-
gered normalization properties of the calculus. The calculus
of inductive constructions (CIC) extends CC with built-in
inductive datatypes and serves as a basis for later versions
of Coq [16].

Ghani et al. describe the derivation of induction principle
for inductive types in fibrational setting [6]. For example, the
described approach allows to derive induction for hyperfunc-
tions which arise as a fixed point of F X = (X — Int) — Int
(this fixed point cannot be interpreted as a set). Since their
approach is purely categorical then it is also inherently ex-
tensional.

In some ways closest to the present work is a recent se-
ries of papers on adding foundational support for datatypes
and co-datatypes based on category theory, to Isabelle/HOL.
This line of numerous papers is summarized in [3]; the ini-
tiating paper is [21]. Like the present work, foundational
(co)datatypes for Isabelle/HOL is based on a categorical view
of algebras (and coalgebras). At a high level, the main point
in favor of our approach is that we achieve a single generic
derivation of induction within our theory. In contrast, the
Isabelle/HOL work has developed a package which, given
suitable user specifications of (co)datatypes, can generate,
in a foundational way, the requisite definitions and proofs
of various desired theorems. So they produce derivations
of induction and related constructs automatically for each
datatype presented, while we give a single generic derivation
once and for all. While the Isabelle/HOL work derives more
than our approach (e.g., we have not treated codatatypes,
nor do we integrate with a complex ecosystem of theorem-
proving plugins and packages), their package weighs in at a
hefty 29,000 lines of Standard ML [3]. Our developments are
an order of magnitude smaller (and carried out within the
theory itself).

8 Conclusions and future work

We showed that Calculus of Constructions extended with
implicit products, intersection types, and heterogeneous
equality allows to generically derive an induction rule for
impredicatively encoded inductive datatypes. In our work
we considered Church-style and Mendler-style encodings.
We observed that Mendler-style representation of recursive
calls (inductive hypothesis) makes the derivation of induc-
tion simpler than the Church-style representation. Also we
proved the Lambek’s lemma and showed that Church-style
and Mendler-style encodings are isomorphic.

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

CPP’18, January 08-09, 2018, Los Angeles, CA, USA

Even with many explicit type annotations required by
the current early-stage implementation of Cedille, our de-
velopments are very compact. The entire code for deriving
induction, proving the discussed properties, and the exam-
ples is, for Church-encoding, 800 lines of Cedille, and for
Mendler-encoding, it is just 600 lines. Thus we have achieved
one of the goals of the Cedille project, to give a compact core
type theory in which we can derive inductive types in a
concise way.

In future, we consider to explore richer classes of datatypes
in Cedille. For example, it should be straightforward to ex-
tend our development to indexed datatypes by defining them
as least fixed points of indexed functors.

Another interesting direction is investigation of inductive-
recursive datatypes in Cedille. Uustalu and Vene describe a
construction which allows to turn any scheme S : * — x
(S can be mixed-variant—argument can appear on covari-
ant and contravariant positions.) into an isomorphic scheme
S*e : % — % which is a functor. Then they show how to
use this construction for taking a least fixed point of a mixed-
variant scheme to implement a course-of-value natural num-
bers (natural numbers paired with predecessor function).
We conjecture that the same construction could be used for
expressing the inductive-recursive datatypes in Cedille.

Unfortunately, Church-style and Mendler-style encodings
suffer from linear time predecessor function. The possible
alternatives are Parigot and Stump-Fu encodings. Parigot
encoding represents datatypes as their own recursors which
allows to have a constant time predecessor. The drawback
of this is that the representation of natural n is exponential
in call-by-value setting. More recent Stump-Fu encoding im-
proves the Parigot representation by requiring only quadratic
space for representation of natural n. We plan to investigate
if the induction principle is derivable for these encodings.

References

[1] Ki Yung Ahn and Tim Sheard. 2011. A Hierarchy of Mendler Style
Recursion Combinators: Taming Inductive Datatypes with Negative
Occurrences. In Proceedings of the 16th ACM SIGPLAN International
Conference on Functional Programming (ICFP °11). ACM, New York, NY,
USA, 234-246.

[2] Patrick Bahr. 2011. Evaluation a la carte: Non-strict evaluation via
compositional data types. In Proceedings of the 23rd Nordic Workshop
on Programming Theory (NWPT ’11). 38—-40.

[3] Julian Biendarra, Jasmin Christian Blanchette, Aymeric Bouzy, Martin
Desharnais, Mathias Fleury, Johannes Hélzl, Ondrej Kuncar, Andreas
Lochbihler, Fabian Meier, Lorenz Panny, Andrei Popescu, Christian
Sternagel, René Thiemann, and Dmitriy Traytel. 2017. Foundational
(Co)datatypes and (Co)recursion for Higher-Order Logic. In Frontiers
of Combining Systems - 11th International Symposium, FroCoS 2017,
Brasilia, Brazil, September 27-29, 2017, Proceedings (Lecture Notes in
Computer Science), Clare Dixon and Marcelo Finger (Eds.), Vol. 10483.
Springer, 3-21.

[4] Benjamin Delaware, Bruno C. d. S. Oliveira, and Tom Schrijvers.
2013. Meta-theory a La Carte. In Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL °13). ACM, New York, N, USA, 207-218.

12

Denis Firsov and Aaron Stump

[5] The Agda development team. 2016. Agda. http://wiki.portal.chalmers.

se/agda/pmwiki.php Version 2.5.1.

Clément Fumex, Neil Ghani, and Patricia Johann. 2011. Indexed In-

duction and Coinduction, Fibrationally. In Algebra and Coalgebra in

Computer Science - 4th International Conference, CALCO 2011, Winch-

ester, UK, August 30 - September 2, 2011. Proceedings. 176-191.

Herman Geuvers. 2001. Induction Is Not Derivable in Second Order

Dependent Type Theory. In Typed Lambda Calculi and Applications

(TLCA). 166-181.

Neil Ghani, Patricia Johann, and Clément Fumex. 2010. Fibrational

Induction Rules for Initial Algebras. In Proceedings of the 24th Interna-

tional Conference/19th Annual Conference on Computer Science Logic

(CSL). Springer-Verlag, 336-350.

Graham Hutton. 1999. A Tutorial on the Universality and Expressive-

ness of Fold. J. Funct. Program. 9, 4 (July 1999), 355-372.

[10] Alexei Kopylov. 2003. Dependent Intersection: A New Way of Defining
Records in Type Theory. In 18th IEEE Symposium on Logic in Computer
Science (LICS). 86-95.

[11] Joachim Lambek. 1968. A Fixpoint Theorem for complete Categories.
Mathematische Zeitschrift 103 (1968), 151-161.

[12] Daniel Leivant. 1983. Reasoning about functional programs and com-
plexity classes associated with type disciplines. In 24th Annual Sym-
posium on Foundations of Computer Science (FOCS). IEEE Computer
Society, 460-469.

[13] The Coq development team. 2016. The Coq proof assistant reference
manual. LogiCal Project. http://coq.inria.fr Version 8.5.

[14] Conor McBride. 2002. Elimination with a Motive. In Types for Proofs and
Programs, International Workshop, TYPES 2000, Durham, UK, December
8-12, 2000, Selected Papers (Lecture Notes in Computer Science), Paul
Callaghan, Zhaohui Luo, James McKinna, and Robert Pollack (Eds.),
Vol. 2277. Springer, 197-216.

[15] Alexandre Miquel. 2001. The Implicit Calculus of Constructions Ex-
tending Pure Type Systems with an Intersection Type Binder and
Subtyping. In Typed Lambda Calculi and Applications (TLCA), Samson
Abramsky (Ed.). 344-359.

[16] Christine Paulin-Mohring. 1993. Inductive Definitions in the System
Coq - Rules and Properties. In Proceedings of the International Confer-
ence on Typed Lambda Calculi and Applications (TLCA ’93). Springer-
Verlag, London, UK, UK, 328-345.

[17] Frank Pfenning and Christine Paulin-Mohring. 1989. Inductively De-
fined Types in the Calculus of Constructions. In Proceedings of the Fifth
Conference on the Mathematical Foundations of Programming Seman-
tics, Tulane University, New Orleans, Louisiana, M. Main, A. Melton,
M. Mislove, and D. Schmidt (Eds.). Springer-Verlag LNCS 442, 209-228.

[18] Aaron Stump. [n. d.]. The Calculus of Dependent Lambda Eliminations.
Journal of Functional Programming 27 ([n. d.]), e14.

[19] Aaron Stump. 2017. From Realizability to Induction via Dependent
Intersection. (2017). Under consideration for Annals of Pure and
Applied Logic.

[20] Wouter Swierstra. 2008. Data Types a La Carte. J. Funct. Program. 18,
4 (July 2008), 423-436.

[21] Dmitriy Traytel, Andrei Popescu, and Jasmin Christian Blanchette.
2012. Foundational, Compositional (Co)datatypes for Higher-Order
Logic: Category Theory Applied to Theorem Proving. In Proceedings
of the 27th Annual IEEE Symposium on Logic in Computer Science, LICS
2012, Dubrovnik, Croatia, June 25-28, 2012. IEEE Computer Society,
596-605.

[22] Tarmo Uustalu and Varmo Vene. 1999. Mendler-style Inductive Types,
Categorically. Nordic J. of Computing 6, 3 (Sept. 1999), 343-361.

[23] Philip Wadler. 1990. Recursive types for free! http://homepages.inf.ed.
ac.uk/wadler/papers/free-rectypes/free-rectypes.txt

[24] Philip Wadler. 2016. The Expression Problem. http://homepages.inf.ed.
ac.uk/wadler/papers/expression/expression.txt

[6

—

7

—

8

—

[9

—

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://coq.inria.fr
http://homepages.inf.ed.ac.uk/wadler/papers/free-rectypes/free-rectypes.txt
http://homepages.inf.ed.ac.uk/wadler/papers/free-rectypes/free-rectypes.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

	Abstract
	1 Introduction
	2 Background
	2.1 Deriving natural-number induction

	3 Encodings of inductive types
	3.1 Church-style inductive types
	3.2 Mendler-style inductive types
	3.3 Comparison of approaches

	4 Induction principle
	4.1 Induction for Mendler-style types
	4.2 Induction for Church-style types
	4.3 Discussion

	5 Properties
	5.1 Initiality
	5.2 Reflection, cancellation, and fusion
	5.3 Lambek's lemma
	5.4 Isomorphism of encodings

	6 Examples
	6.1 Natural numbers
	6.2 Lists

	7 Related work
	8 Conclusions and future work
	References

