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EasyCrypt 

● Toolset for reasoning about probabilistic computations with 
adversarial code.

● The main application is the construction and verification of 
cryptographic proofs (especially game-based).
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Basics

● Total functional language with inductive datatypes:

op id ['a] : 'a -> 'a = λ x. x.

● Ambient higher-order classical logic:

lemma id_prop ['a] : forall (x : 'a), id x = x.

    proof. trivial. qed.
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Distributions

● Every type is associated with the type of discrete (sub-)distributions 
of its elements.

type x = int distr.

● A discrete distribution is fully defined by its mass  function. i.e. by a 
non-negative function f :: t -> real so that 𝚺ₓ f(x) ≤ 1.
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● In EasyCrypt, cryptographic protocols are modeled as modules, 
which consists of global variables and procedures.

● Modules may be parameterized by other modules (for example, 
adversaries, oracles, etc.).

● Procedures are written in a simple imperative language, with while 
loops and random sampling.

Modules
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Example: Guessing game
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module GuessingGame = {
  var c q : int
  var win : bool

  proc init(x : int) = {
    (c, win, q) <- (0, false, x);
  }

  proc guess(x : bits) : bool = {
    var r;
    if (c < q) {
      r <$ bD;
      win <- win || r = x;
      c <- c + 1;
    }    
    return win;
  }
}.

● The module GuessingGame has three 
global variables: c and q of type int, and 
win of type bool.

● For any initial memory m the state of the 
module is a tuple:

glob GuessingGame 
   = int * int * bool.

● The player has at most q attempts (set by 
initialization procedure). 

● The player wins if they guess correctly at 
least once.
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Module types

● In EasyCrypt module types specify the types of a set of module 
procedures (similar to interfaces in Java).

● We can specify the module type of GuessingGame as follows:

module type GuessingGame = {

      proc init(x : int) : unit

      proc guess(x : bits) : bool

    }.

7



+

● We can define a module type of protocol parties 
(adversaries/players), who receive an instance of a guessing game as 
a module parameter.

● An adversary must have a play() procedure which starts the game:

module type Adversary(G : GuessingGame) = {

         proc play() : unit {G.guess}

}.

● To forbid adversaries to reinitialize the game the play() procedure 
can only execute the guess() procedure of the parameter game.

Module types
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Probability expressions

EasyCrypt has Pr-constructs which can be used to refer to the 
probabilities of events in program executions:

  Pr[r ← X.p() @ m : M r]

denotes the probability that the return value r of procedure p of 
module X given initial memory m satisfies the predicate M.
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Probability expressions: Example
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We can express the probability of adversary A winning the 
guessing-game with q tries  (G := GuessingGame):

           Pr[G.init(q); A(G).play() @ m: G.win].
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Program logics

● Ordinary Hoare logic:
hoare [ M.p : P ⇒ Q ].

● Probabilistic Hoare logic for proving probabilistic facts about single 
games:
phoare [ M.p : P ⇒ Q ] = real.

● Probabilistic Relational Hoare Logic for proving relations between 
pairs of games:
equiv [ M.p ~ W.b : P ⇒ Q ].
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Program logics

● equiv [ b <$ {0,1} ~ q <$ {0,1} : true ⇒ b = q ].

● equiv [ b <$ {0,1} ~ q <$ {0,1} : true ⇒ b ≠ q ].
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Using the program logics we can try to prove the upper bound on the 
winning event (let G := GuessingGame):

lemma winPr : ∀ (A : Adversary) m q, 0 ≤ q

Pr[G.init(q); A(G).play() @ m: G.win]

      ≤ q / support_size bD.

Do you think it is provable?

Probability expressions: Example
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What if G is also adversary? Hence, we must exclude G from the set of 
adversaries.

lemma winPr : ∀ (A : Adversary{-G}) m q, 0 ≤ q

Pr[G.init(q); A(G).play() @ m: G.win]

      ≤ q / support_size bD.

Probability expressions: Example
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¡Proof Flash!
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proof. move => A. move => q q_pos.

have ->:  Pr[ Main(GG,A).main(q) @ &m : GG.win ] = Pr[ 
Main(GG,A).main(q) @ &m : GG.win  /\ (0 <= GG.c <= q) ].

byequiv (_: ={glob A, glob GG, arg} /\ GG.q{1} = GG.q{2} 
/\ arg{1} = q  ==> _). proc.

seq 1 1 : (={glob A, glob GG} /\ GG.q{1} = GG.q{2} /\ (0 
<= GG.c <= GG.q){1} /\ GG.q{1} = q).

inline *.   wp. skip. progress.

 call (_: (0 <= GG.c <= GG.q){1} /\ ={glob GG} /\ 
GG.q{1} = q).

proc. sp. if. smt.  wp. rnd. skip. smt. skip. smt.

skip. progress. auto.  auto.  

  fel 1 GG.c (fun x => 1%r / (supp_size bD)%r) q GG.win 
[GG.guess : (GG.c < GG.q)] => //.

   rewrite BRA.sumr_const RField.intmulr count_predT.

smt (size_range).

   inline *;auto.

   

proc;inline *;sp 1;if;last by hoare.

wp.

conseq (_ : _ ==> r = x)=> [ /# | 

].

rnd;auto => &hr /> ??? .

move => z.

rewrite mu1_uni_ll. apply bDU. 

apply bDL.

  smt.

   move=> c;proc;sp;inline *.

by rcondt 1 => //;wp;conseq (_: _ 

==> true) => // /#.

  move=> b c;proc;sp;inline *;if => //.

  sp. wp. rnd.  skip.  smt.

qed.
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Example: Collision resistance
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module type Adv = {
  proc adv(g : D → D) : D * D        
}.

module CR(A : Adv) = {

  proc main(h : D → D) : bool = {
var x, x' : D;

(x, x') <@ A.adv(h);

return h x = h x' 
                ∧ x ≠ x';
  }
}.

● Define set of collision resistance 
adversaries.

● Define collision resistance game (aka 
experiment) played by an adversary.

● We say that “h” is collision-resistant iff 

        ∀ m A,Pr[CR(A).main(h) @ m : res] 
                          is small.

● Is CR preserved under self-composition?
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Example: Proof by reduction
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module B(A : Adv) = {
  proc adv(h : D → D) : D * D = {
    var x,x',r,r' : D;

    (x, x') <@ A.adv(h￮h);

    if ((h x) = (h x')) {
      r  ← x;
      r' ← x';
    } else {
      r  ← h x;
      r' ← h x';
    }
    return (r,r');
  }
}.

● Assume there is an adversary A 
who breaks h ￮ h.

● Implement transformation B 
which can use A to break CR of h.

● If we succeed then we arrive at 
contradiction with assumption 
that h is CR.

● Conclude that h ￮ h is CR.
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Lemma and proof
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lemma cr_preservation : ∀ (A : Adv) m,
  Pr[CR(A).main(h ￮ h) @ m : res]

 ≤ Pr[CR(B(A)).main(h) @ m : res].

proof.

  progress. 

  byequiv => //.     (* KEY: using pRHL *)

  proc.

  inline*. wp.

  call (_:true).

  wp.

  skip.

  progress.

qed.
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Up to here…
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● We used probabilistic Hoare logic to derive an exact bound:

lemma winPr : ∀ (A : Adversary{-G}) m q, 0 ≤ q => 
   Pr[G.init(q); A(G).play() @ m: G.win] 
     ≤ q / support_size bD.

● We used probabilistic relational Hoare logic to develop a proof by reduction:

lemma cr_preservation : ∀ (A : Adv) m, 
  Pr[CR(A).main(h ￮ h) @ m : res] 

    ≤ Pr[CR(B(A)).main(h) @ m : res].

● What about conceptually more complicated proofs?
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More complex arguments?
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More complex proofs?
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● Step (1) applies “the averaging 
technique” by representing 𝐴.init() as a 
family of distributions D.

● Step (2) applies multiplication rule to two 
independent runs.

● Step (3) is an application of Jensen’s 
inequality. 

● Step (4) undoes the averaging.
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More complex proofs?
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● Problem: the built-in program logics/tactics can handle basic proof patterns, but (usually) will not work if 
you need more complex mathematical results.

● The main challenge is absence of reflection of programs into their denotation.

● Ideally we want the following theorem (inside the EasyCrypt):
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● Probabilistic reflection of modules

                       lemma prob_reflection : ∃ D, ∀ m M i, 
                           Pr[ r ← A.main(i) @ m: M (r, glob_fin A) ]
                                = mu (D (glob A){m} i) M.

(At its core the proof is based on Axiom of Choice.)

● We also showed a monadic structure on the program composition.

● This result allows users to transfer mathematical results to denotation of programs and the programs 
themselves.

● Using this approach we derived a useful tool-set of results which are common to cryptographic proofs
○ Finite approximation: good for proofs by induction
○ Jensen’s inequality: bread-and-butter of cryptography
○ Averaging (also with infinite support)
○ Rewinding
○ …

Probabilistic reflection
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Case-Study: Zero-knowledge
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● We implemented a generic library of results for sigma-protocols.

● With reasonably small effort you can (semi-)automatically derive main 
properties for your favorite ZK sigma-protocol:

○ Completeness
○ Special Soundness
○ Extractability (from special soundness)
○ Soundness (from extractability)
○ Zero-Knowledge (from one-time simulators)
○ + Sequential Composition

● Proofs rely on lots of analysis and highly unlikely to be doable in program 
logics only.
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Towards executable protocols!
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How to get from mathematical EasyCrypt model of a protocol to the 
executable protocol and preserve the established guarantees and not 
introduce side-channels?



Motivation
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● Let our security depend on a secret 256-bitstring 
sampled uniformly at random.

● Also assume that guessing the string is the only 
possible attack available for adversaries.



Motivation
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● What are the odds that an adversary will get access?

● The success of an adversary who does N tries is bounded from above as 
follows:

● So, in mathematical model we proved that our toy-system is “galactically” 
safe.



Motivation
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In real life the security might crucially depend on the 
implementation details of the server.



Motivation
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secret: b1 b2 b3 b4 …

guess: q1 q2 q3 q4 …

    
?

    
?

    
? …

    
?

● For example, the optimizing compiler might decide to generate machine-code which 
checks equality UNTIL THE FIRST DIFFERENCE IS ENCOUNTERED.

● In this case if adversary can time responses of our server it can figure 
out the secret in a byte-by-byte manner with ~10^5 queries.



Motivation
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● As a result we have discrepancy between the predictions of a 
mathematical model and the real-life implementation.

● The illustrated attack belongs to a family of side-channel attacks:
○ timing attack
○ cache side-channel attack
○ power-analysis attack
○ …



Challenge

How to show that an executable of a protocol is 

cryptographically secure and is free of side-channel attacks?
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Jasmin programming workbench

● Jasmin combines high-level and low-level constructs to support “assembly in the head” programming 

paradigm.

● Programmers can control low-level features:

○ Instruction selection

○ Scheduling

○ Registers

○ Stack

● Also, programmers have “high-level” abstractions: variables, functions, arrays, loops, etc.
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Jasmin programming workbench

● The semantics is formally defined in Coq to allow rigorous reasoning about program behaviors.

● Jasmin programs can be automatically checked for safety:

○ termination;

○ array accesses are in bounds;

○ memory accesses are valid;

○ validity of arguments.

● Moreover, Jasmin programs can be extracted to EasyCrypt theorem prover for formal verification: 

○ functional correctness; 

○ cryptographic security;

○ security against side-channel attacks.
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Overview
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Jasmin
(implement the protocol)

Assembler
(run the protocol)

EasyCrypt
(prove security/safety)

Extraction to EasyCrypt

Extraction to Assembler



Example: Swap operation

● Let us implement `swap` operation such that
○ swap(x,y,0) == (x,y)
○ swap(x,y,1) == (y,x)

● Guess what will go wrong with the naive “if-then-else” implementation. 
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Example: 256-bit `swap` in Jasmin

inline fn swap(stack u64[4] x, stack u64[4] y, reg u64 swap) -> (stack u64[4], stack u64[4]) {

  reg u64 tmp1, tmp2, mask;
  inline int i;

  mask = swap * 0xffffffffffffffff;

  for i = 0 to 4 {
tmp1   = x[i];
tmp1  ^= y[i];
tmp1  &= mask;
x[i]  ^= tmp1;
tmp2   = y[i];
tmp2  ^= tmp1;
y[i] = tmp2;

  }
  return x, y;
}
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Example: Extraction to EasyCrypt

  proc swap (x : W64.t Array4.t, y : W64.t Array4.t, swap_0 : W64.t) : W64.t Array4.t * W64.t Array4.t = {
var aux : int;
var mask : W64.t;
var i : int;
var tmp1 : W64.t;
var tmp2 : W64.t;

    
mask <- (swap_0 * (W64.of_int 18446744073709551615));
i <- 0;
while (i < 4) {

    tmp1 <- x.[i];
    tmp1 <- (tmp1 `^` y.[i]);
    tmp1 <- (tmp1 `&` mask);
    x.[i] <- (x.[i] `^` tmp1);
    tmp2 <- y.[i];
    tmp2 <- (tmp2 `^` tmp1);
    y.[i] <- tmp2;
    i <- i + 1;

}
return (x, y);

  }
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Example: Functional correctness

We use the Hoare Logic of EasyCrypt to establish the functional correctness:

lemma swap_correct: ∀ a b f,

 Pr[ swap(a,b,f) = if f then (b,a) else (a,b)] = 1.  
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  proc swap (x : W64.t Array4.t, y : W64.t Array4.t, swap_0 : W64.t) : W64.t Array4.t * W64.t Array4.t = {
var aux_0 i : int;
var aux mask : W64.t;
var tmp1 tmp2 : W64.t;
leakages <- LeakAddr([]) :: leakages;
aux <- (swap_0 * (W64.of_int 18446744073709551615));
mask <- aux;
leakages <- LeakFor(0,4) :: LeakAddr([]) :: leakages;
i <- 0;
while (i < 4) {

    leakages <- LeakAddr([i]) :: leakages;
    aux <- x.[i];
    tmp1 <- aux;
    leakages <- LeakAddr([i]) :: leakages;
    aux <- (tmp1 `^` y.[i]);
    tmp1 <- aux;
    leakages <- LeakAddr([]) :: leakages;
    aux <- (tmp1 `&` mask);
    tmp1 <- aux;
    leakages <- LeakAddr([i]) :: leakages;
    aux <- (x.[i] `^` tmp1);
    leakages <- LeakAddr([i]) :: leakages;
    x.[i] <- aux;
    leakages <- LeakAddr([i]) :: leakages;
    aux <- y.[i];
    tmp2 <- aux;
    leakages <- LeakAddr([]) :: leakages;
    aux <- (tmp2 `^` tmp1);
    tmp2 <- aux;
    leakages <- LeakAddr([]) :: leakages;
    aux <- tmp2;
    leakages <- LeakAddr([i]) :: leakages;
    y.[i] <- aux;
    i <- i + 1;

}
return (x, y);

  }
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Example: Constant-timeness proof

Intuitively the following proves that `swap` does not leak anything about its 
arguments:

     equiv swap_constant_time: 

             swap ~ swap : ={M.leakages} ==> ={M.leakages}.
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Example: Recap

● We used Jasmin to implement the `swap` function on 256-bit words.

● We extracted Jasmin implementation to EasyCrypt and proved functional 
correctness.

● We used “leakage”-annotated extraction to prove that the function is constant-time.

● In addition, we can use automatic checking to ensure memory safety, termination, 
etc.

● Finally, we can compile Jasmin to assembler which is preserves all the mentioned 
properties.
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`swap` is great, but what about real cryptographic protocols?



● In the Schnorr protocol the prover tries to convince a verifier that it knows a discrete logarithm of a 

statement.

● Maturity test case: Implement the Schnorr protocol in Jasmin and transfer the security proofs.

Schnorr protocol in Jasmin
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Honest prover (mathematical model)

module HonestProver = {

  proc commitment(s : statement, w : witness) : commitment = {  

r <-$ uniform_distr;

return g ^ r;

  }

  proc response(b:challenge) : response = {

return r + b * w;

  }  

}.
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Honest verifier (mathematical model)

module HonestVerifier = {

  proc challenge(s : statement, c : commitment) : challenge = {

ch <$ dt;

return ch;

  }

  proc verify(r : response) : bool = {

return  g ^ r = (s ^ ch) * c;

  }

}.
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● From the perspective of conventional programming both honest verifier and honest prover are 

exceptionally simple (but not the associated ZK properties).

● After all the implementation relies only on group operations, exponentiation, and sampling.

● Unfortunately, none of these operations are currently implemented in Jasmin in their full generality.

● For cryptographic protocols we need to develop an approach for sampling and prove 

indistinguishability results.

○ Perfect sampling is out-of-reach. 

Implementation in Jasmin?
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● We developed a modular exponentiation in Jasmin (denotationally just “(x ^ m) mod p”).

● However, the implementation makes use of specialized algorithms:
○ Montgomery ladder/form
○ Barrett reduction

● We proved that the result is correct, safe, and secure
○ Functional correctness (utilizes analysis in reals and then transfer to integer and then to machine words)
○ Memory safety properties
○ Side-channel freedom

● Implementation and proofs for “(x ^ m) mod p”  ~1300loc.

● Performance wise we are 3x slower than specialized GMP library (not constant time, no correctness guarantees).
 

Example: Modular exponentiation
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● The Jasmin workbench ambitiously aims at formal derivation of both high and low-level security 

properties.

● The approach needs more manpower to develop mature tools, libraries, and use cases.

● Most importantly, the resulting protocols must be executable, efficient, and provide unprecedented 

levels of security.

Jasmin goals

48



● Resource analysis

○ In standard EC you must verify complexity of transformations by hand.

○ Resource analysis allows to prove the complexity bounds on transformations.

○ Also allows users to express properties more naturally.

● EasyPQC: for verification of post-quantum cryptography

○ Standard EC is not compatible with quantum cryptography

There is more!
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EasyCrypt applications

● Encryption schemes 
○ Saber encryption at Crypto2022

● Commitments
○ hiding, binding, non-malleability

● Timestamping
○ Backdating-resistance analysis

● Digital signatures
○ Existential unforgeability

● Zero-knowledge 
○ Sigma protocols

● Voting 
● Differential privacy
● UC
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Shortcomings
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● Technical 
○ Not (anymore) foundational
○ No parallelism
○ No timings

● General
○ Lack of educational resources
○ Partial and outdated manual
○ No good backwards compatibility

■ Tool is actively developed
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Thank you!


