

EasyCrypt for the working cryptographers

Denis Firsov

EasyCrypt

- Toolset for reasoning about probabilistic computations with adversarial code.
- The main application is the construction and verification of cryptographic proofs (especially game-based).

Basics

Total functional language with inductive datatypes:

```
op id ['a] : 'a -> 'a = \lambda x. x.
```

Ambient higher-order classical logic:

```
lemma id_prop ['a] : forall (x : 'a), id x = x.
proof. trivial. qed.
```

- (

 Every type is associated with the type of discrete (sub-)distributions of its elements.

```
type x = int distr.
```

• A discrete distribution is fully defined by its mass function. i.e. by a non-negative function f :: t -> real so that $\Sigma_x f(x) \le 1$.

4

Modules

- In EasyCrypt, cryptographic protocols are modeled as modules, which consists of global variables and procedures.
- Modules may be parameterized by other modules (for example, adversaries, oracles, etc.).
- Procedures are written in a simple imperative language, with while loops and random sampling.

Example: Guessing game

- The module GuessingGame has three global variables: c and q of type int, and win of type bool.
- For any initial memory **m** the state of the module is a tuple:

- The player has at most q attempts (set by initialization procedure).
- The player wins if they guess correctly at least once.

```
module GuessingGame = {
  var c q : int
  var win : bool
  proc init(x : int) = {
    (c, win, q) <- (0, false, x);
  proc guess(x : bits) : bool = {
    var r;
    if (c < q) {
      r <$ bD;
      win <- win || r = x;
      c < -c + 1;
    return win;
```

Module types

- In EasyCrypt **module types** specify the types of a set of module procedures (similar to interfaces in Java).
- We can specify the module type of GuessingGame as follows:

```
module type GuessingGame = {
   proc init(x : int) : unit
   proc guess(x : bits) : bool
}.
```

7

Module types

- We can define a module type of protocol parties (adversaries/players), who receive an instance of a guessing game as a module parameter.
- An adversary must have a play() procedure which starts the game:

```
module type Adversary(G : GuessingGame) = {
    proc play() : unit {G.guess}
}.
```

• To forbid adversaries to reinitialize the game the play() procedure can only execute the guess() procedure of the parameter game.

Probability expressions

EasyCrypt has Pr-constructs which can be used to refer to the probabilities of events in program executions:

$$Pr[r \leftarrow X.p() @ m : M r]$$

denotes the probability that the return value r of procedure p of module X given initial memory m satisfies the predicate M.

9

Probability expressions: Example

We can express the probability of adversary A winning the guessing-game with q tries (G := GuessingGame):

```
Pr[G.init(q); A(G).play() @ m: G.win].
```

Program logics

Ordinary Hoare logic:

```
hoare [ M.p : P \Rightarrow Q ].
```

 Probabilistic Hoare logic for proving probabilistic facts about single games:

```
phoare [ M.p : P \Rightarrow Q ] = real.
```

 Probabilistic Relational Hoare Logic for proving relations between pairs of games:

```
equiv [ M.p \sim W.b : P \Rightarrow Q ].
```

11

Program logics

• equiv [b <\$ $\{0,1\}$ ~ q <\$ $\{0,1\}$: true \Rightarrow b = q].

• equiv [b <\$ $\{0,1\}$ ~ q <\$ $\{0,1\}$: true \Rightarrow b \neq q].

Probability expressions: Example

Using the program logics we can try to prove the upper bound on the winning event (let G := GuessingGame):

```
lemma winPr : ∀ (A : Adversary) m q, 0 ≤ q
Pr[G.init(q); A(G).play() @ m: G.win]
≤ q / support_size bD.
```

Do you think it is provable?

Probability expressions: Example

What if G is also adversary? Hence, we must exclude G from the set of adversaries.

```
lemma winPr : ∀ (A : Adversary{-G}) m q, 0 ≤ q
Pr[G.init(q); A(G).play() @ m: G.win]
≤ q / support_size bD.
```

¡Proof Flash!

```
proof. move => A. move => q q pos.
have ->: Pr[Main(GG,A).main(q) @ &m : GG.win ] = Pr[
Main(GG,A).main(q) @ &m : GG.win / (0 <= GG.c <= q) ].
byequiv ( : ={glob A, glob GG, arg} / \ GG.q\{1\} = GG.q\{2\}
/\ arg\{1\} = q ==> _). proc.
seq 1 1 : (=\{glob A, glob GG\} / GG.q\{1\} = GG.q\{2\} / (0)
<= GG.c <= GG.q){1} / GG.q{1} = q).
inline *. wp. skip. progress.
 call ( : (0 \le GG.c \le GG.q)\{1\} / = \{glob GG\} / \}
GG.a\{1\} = a).
proc. sp. if. smt. wp. rnd. skip. smt. skip. smt.
skip. progress. auto. auto.
 fel 1 GG.c (fun x => 1%r / (supp_size bD)%r) q GG.win
[GG.guess : (GG.c < GG.q)] => //.
   rewrite BRA.sumr_const RField.intmulr count_predT.
        smt (size_range).
   inline *;auto.
```

```
proc; inline *; sp 1; if; last by hoare.
        wp.
        conseq (_ : _ ==> r = x)=> [ /# |
].
        rnd;auto => &hr /> ??? .
        move \Rightarrow z.
        rewrite mu1 uni ll. apply bDU.
apply bDL.
  smt.
   move=> c;proc;sp;inline *.
        by rcondt 1 => //;wp;conseq (:
==> true) => // /#.
  move=> b c;proc;sp;inline *;if => //.
  sp. wp. rnd. skip. smt.
qed.
```

Example: Collision resistance

- Define set of collision resistance adversaries.
- Define collision resistance game (aka experiment) played by an adversary.
- We say that "h" is collision-resistant iff

```
∀ m A,Pr[CR(A).main(h) @ m : res]
is small.
```

Is CR preserved under self-composition?

```
module type Adv = {
  proc adv(g : D \rightarrow D) : D * D
}.
module CR(A : Adv) = {
  proc main(h : D \rightarrow D) : bool = {
     var x, x' : D;
      (x, x') < \emptyset A.adv(h);
     return h x = h x'
                    \Lambda x \neq x';
```

Example: Proof by reduction

- Assume there is an adversary A who breaks h o h.
- Implement transformation B which can use A to break CR of h.
- If we succeed then we arrive at contradiction with assumption that h is CR.
- Conclude that h ∘ h is CR.

```
module B(A : Adv) = {
  proc adv(h : D \rightarrow D) : D * D = {
     var x,x',r,r' : D;
     (x, x') < \emptyset A.adv(h \circ h);
     if ((h x) = (h x')) {
        r \leftarrow x;
        r' \leftarrow x';
     } else {
        r \leftarrow h x;
        r' \leftarrow h x';
     return (r,r');
```

Lemma and proof

```
lemma cr_preservation : ∀ (A : Adv) m,
  Pr[CR(A).main(h \circ h) @ m : res]
       \leq \Pr[CR(B(A)).main(h) @ m : res].
proof.
  progress.
  byequiv => //. (* KEY: using pRHL *)
  proc.
  inline*. wp.
  call (_:true).
 wp.
  skip.
  progress.
qed.
```

Up to here...

We used probabilistic Hoare logic to derive an exact bound:

```
lemma winPr : ∀ (A : Adversary{-G}) m q, 0 ≤ q =>
Pr[G.init(q); A(G).play() @ m: G.win]
≤ q / support_size bD.
```

• We used probabilistic relational Hoare logic to develop a proof by reduction:

```
lemma cr_preservation : \forall (A : Adv) m,

Pr[CR(A).main(h \circ h) @ m : res]

\leq Pr[CR(B(A)).main(h) @ m : res].
```

What about conceptually more complicated proofs?

19

More complex arguments?

```
\Pr\left[\begin{array}{c} A.init(); \ s \leftarrow A.getState(); \\ r_1 \leftarrow A.main(); \ A.setState(s); \\ r_2 \leftarrow A.main() @ \ \mathbf{m} : r_1 \wedge r_2 \end{array}\right] \\ \geq \Pr\left[A.init(); \ r \leftarrow A.main() @ \ \mathbf{m} : r \right]^2.
```

20

More complex proofs?

- Step (1) applies "the averaging technique" by representing A.init() as a family of distributions D.
- Step (2) applies multiplication rule to two independent runs.
- Step (3) is an application of Jensen's inequality.
- Step (4) undoes the averaging.

Pr
$$\begin{bmatrix} A.init(); & s \leftarrow A.getState(); \\ r_1 \leftarrow A.main(); & A.setState(s); \\ r_2 \leftarrow A.main() @ \mathbf{m} : r_1 \wedge r_2 \end{bmatrix}$$
$$s \leftarrow A.getState(s)$$

$$\stackrel{\text{(1)}}{=} \sum_{\mathbf{n}} \mu_{1}(D_{A}^{\mathbf{m}}, \mathbf{n}) \cdot \Pr \left[\begin{array}{c} s \leftarrow A.getState(); \\ r_{1} \leftarrow A.main(); A.setState(s); \\ r_{2} \leftarrow A.main() @ \mathbf{n} : r_{1} \wedge r_{2} \end{array} \right]$$

$$\stackrel{(2)}{=} \sum_{\mathbf{n}} \mu_1(D_A^{\mathbf{m}}, \mathbf{n}) \cdot \Pr\left[r \leftarrow A. main() @ \mathbf{n} : r\right]^2$$

$$\stackrel{\text{(3)}}{\geq} \left(\sum_{\mathbf{n}} \mu_1(D_A^{\mathbf{m}}, \mathbf{n}) \cdot \Pr\left[r \leftarrow A. main() @ \mathbf{n} : r \right] \right)^2$$

$$\stackrel{\text{(4)}}{=} \Pr\left[A.init(); \ r \leftarrow A.main() @ \mathbf{m} : r\right]^2.$$

More complex proofs?

- Problem: the built-in program logics/tactics can handle basic proof patterns, but (usually) will not work if you need more complex mathematical results.
- The main challenge is absence of reflection of programs into their denotation.
- Ideally we want the following theorem (inside the EasyCrypt):

Theorem 1.2. For all memories m and programs A there exists a family of distributions D_A^g (with g of type G_A) such that for all predicates M on values of type G_A :

$$\Pr\left[A.main() \circledcirc \boldsymbol{m} : M(\mathcal{G}_A^{fin})\right] = \mu(D_A^{\mathcal{G}_A^m}, M).$$

22

Probabilistic reflection

Probabilistic reflection of modules

(At its core the proof is based on Axiom of Choice.)

- We also showed a monadic structure on the program composition.
- This result allows users to transfer mathematical results to denotation of programs and the programs themselves.
- Using this approach we derived a useful tool-set of results which are common to cryptographic proofs
 - Finite approximation: good for proofs by induction
 - Jensen's inequality: bread-and-butter of cryptography
 - Averaging (also with infinite support)
 - Rewinding

...

Case-Study: Zero-knowledge

- We implemented a generic library of results for sigma-protocols.
- With reasonably small effort you can (semi-)automatically derive main properties for your favorite ZK sigma-protocol:
 - Completeness
 - Special Soundness
 - Extractability (from special soundness)
 - Soundness (from extractability)
 - Zero-Knowledge (from one-time simulators)
 - + Sequential Composition
- Proofs rely on lots of analysis and highly unlikely to be doable in program logics only.

Towards executable protocols!

How to get from mathematical EasyCrypt model of a protocol to the executable protocol and preserve the established guarantees and not introduce side-channels?

- Let our security depend on a secret 256-bitstring sampled uniformly at random.
- Also assume that guessing the string is the only possible attack available for adversaries.

 $secret \leftarrow \{0,1\}^{256}$

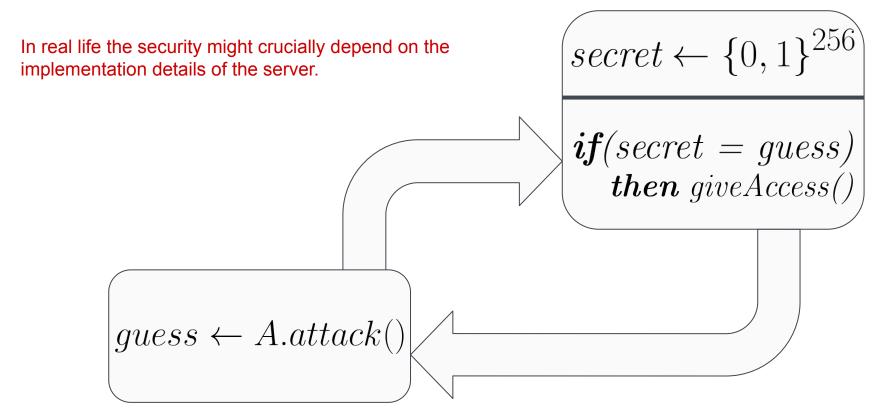
if(secret = guess) then giveAccess()

 $|guess \leftarrow A.attack($

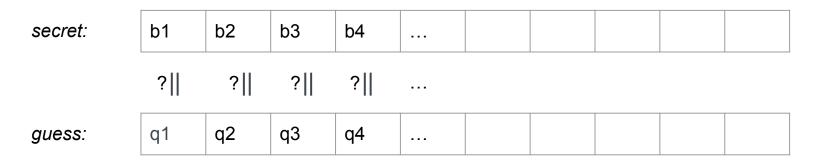
- What are the odds that an adversary will get access?
- The success of an adversary who does N tries is bounded from above as follows:

$$\mathbf{Pr}[\ adversary\ gets\ access\] \le \frac{N}{2^{256}}$$

 So, in mathematical model we proved that our toy-system is "galactically" safe.



• For example, the optimizing compiler might decide to generate machine-code which checks equality UNTIL THE FIRST DIFFERENCE IS ENCOUNTERED.



 In this case if adversary can time responses of our server it can figure out the secret in a byte-by-byte manner with ~10^5 queries.

 As a result we have discrepancy between the predictions of a mathematical model and the real-life implementation.

- The illustrated attack belongs to a family of side-channel attacks:
 - timing attack
 - cache side-channel attack
 - power-analysis attack
 - 0 ...

Challenge

How to show that an executable of a protocol is cryptographically secure and is free of side-channel attacks?

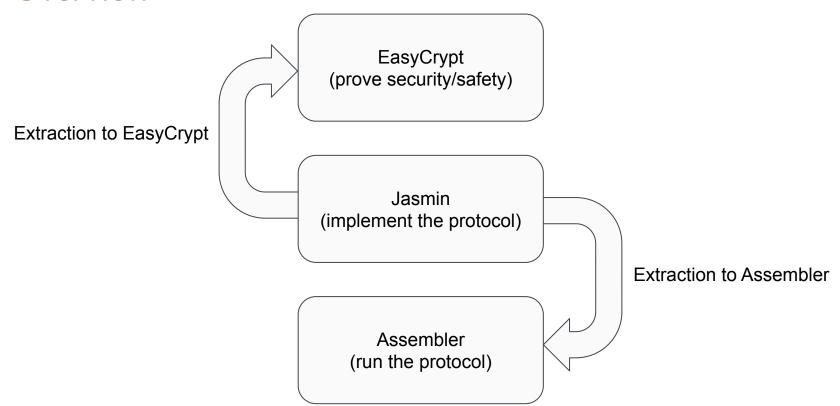
Jasmin programming workbench

- Jasmin combines high-level and low-level constructs to support "assembly in the head" programming paradigm.
- Programmers can control low-level features:
 - Instruction selection
 - Scheduling
 - Registers
 - Stack
- Also, programmers have "high-level" abstractions: variables, functions, arrays, loops, etc.

Jasmin programming workbench

- The semantics is formally defined in Coq to allow rigorous reasoning about program behaviors.
- Jasmin programs can be automatically checked for safety:
 - termination;
 - array accesses are in bounds;
 - memory accesses are valid;
 - validity of arguments.
- Moreover, Jasmin programs can be extracted to EasyCrypt theorem prover for formal verification:
 - functional correctness;
 - cryptographic security;
 - security against side-channel attacks.

Overview



Example: Swap operation

Let us implement `swap` operation such that

```
swap(x,y,0) == (x,y)swap(x,y,1) == (y,x)
```

Guess what will go wrong with the naive "if-then-else" implementation.

Example: 256-bit `swap` in Jasmin

```
inline fn swap(stack u64[4] \mathbf{x}, stack u64[4] \mathbf{y}, reg u64 swap) -> (stack u64[4], stack u64[4]) {
 reg u64 tmp1, tmp2, mask;
 inline int i;
 mask = swap * 0xfffffffffffffff;
 for i = 0 to 4 {
     tmp1 = x[i];
     tmp1 ^= y[i];
     tmp1 &= mask;
     x[i] ^= tmp1;
     tmp2 = y[i];
     tmp2 ^= tmp1;
     y[i] = tmp2;
 return x, y;
```

Example: Extraction to EasyCrypt

```
proc swap (x : W64.t Array4.t, y : W64.t Array4.t, swap 0 : W64.t) : W64.t Array4.t * W64.t Array4.t = {
     var aux : int;
    var mask : W64.t;
    var i : int;
    var tmp1 : W64.t;
    var tmp2 : W64.t;
    mask <- (swap 0 * (W64.of int 18446744073709551615));
     i <- 0:
     while (i < 4) {
       tmp1 <- x.[i];
       tmp1 <- (tmp1 `^` y.[i]);</pre>
       tmp1 <- (tmp1 `&` mask);</pre>
       x.[i] \leftarrow (x.[i] ^  tmp1);
      tmp2 <- y.[i];
       tmp2 <- (tmp2 `^` tmp1);</pre>
      y.[i] <- tmp2;
      i <- i + 1;
     return (x, y);
```

Example: Functional correctness

We use the Hoare Logic of EasyCrypt to establish the functional correctness:

```
lemma swap_correct: ∀ a b f,
Pr[ swap(a,b,f) = if f then (b,a) else (a,b)] = 1.
```

```
proc swap (x : W64.t Array4.t, y : W64.t Array4.t, swap 0 : W64.t) : W64.t Array4.t * W64.t Array4.t = {
      var aux 0 i : int;
      var aux mask : W64.t;
      var tmp1 tmp2 : W64.t;
      leakages <- LeakAddr([]) :: leakages;</pre>
      aux <- (swap 0 * (W64.of int 18446744073709551615));
      mask <- aux;
      leakages <- LeakFor(0,4) :: LeakAddr([]) :: leakages;</pre>
      i <- 0;
      while (i < 4) {
        leakages <- LeakAddr([i]) :: leakages;</pre>
        aux <- x.[i];
        tmp1 <- aux;</pre>
        leakages <- LeakAddr([i]) :: leakages;</pre>
        aux <- (tmp1 `^` y.[i]);</pre>
        tmp1 <- aux;</pre>
        leakages <- LeakAddr([]) :: leakages;</pre>
        aux <- (tmp1 `&` mask);</pre>
        tmp1 <- aux;</pre>
        leakages <- LeakAddr([i]) :: leakages;</pre>
        aux <- (x.[i] `^` tmp1);
        leakages <- LeakAddr([i]) :: leakages;</pre>
        x.[i] <- aux;
        leakages <- LeakAddr([i]) :: leakages;</pre>
        aux <- y.[i];
        tmp2 <- aux;</pre>
        leakages <- LeakAddr([]) :: leakages;</pre>
        aux <- (tmp2 `^` tmp1);</pre>
        tmp2 <- aux;
        leakages <- LeakAddr([]) :: leakages;</pre>
        aux <- tmp2;</pre>
        leakages <- LeakAddr([i]) :: leakages;</pre>
        y.[i] <- aux;
        i < -i + 1;
      return (x, y);
```

Example: Constant-timeness proof

Intuitively the following proves that `swap` does not leak anything about its arguments:

```
equiv swap_constant_time:
    swap ~ swap : ={M.leakages} ==> ={M.leakages}.
```

Example: Recap

- We used Jasmin to implement the `swap` function on 256-bit words.
- We extracted Jasmin implementation to EasyCrypt and proved functional correctness.
- We used "leakage"-annotated extraction to prove that the function is constant-time.
- In addition, we can use automatic checking to ensure memory safety, termination, etc.
- Finally, we can compile Jasmin to assembler which is preserves all the mentioned properties.

`swap` is great, but what about real cryptographic protocols?

Schnorr protocol in Jasmin

- In the Schnorr protocol the prover tries to convince a verifier that it knows a discrete logarithm of a statement.
- Maturity test case: Implement the Schnorr protocol in Jasmin and transfer the security proofs.

Honest prover (mathematical model)

```
module HonestProver = {
   proc commitment(s : statement, w : witness) : commitment = {
      r <-$ uniform_distr;
      return g ^ r;
   }

   proc response(b:challenge) : response = {
      return r + b * w;
   }
}.</pre>
```

Honest verifier (mathematical model)

```
module HonestVerifier = {
   proc challenge(s : statement, c : commitment) : challenge = {
      ch <$ dt;
      return ch;
   }

   proc verify(r : response) : bool = {
      return g ^ r = (s ^ ch) * c;
   }
}.</pre>
```

Implementation in Jasmin?

- From the perspective of conventional programming both honest verifier and honest prover are exceptionally simple (but not the associated ZK properties).
- After all the implementation relies only on group operations, exponentiation, and sampling.
- Unfortunately, none of these operations are currently implemented in Jasmin in their full generality.
- For cryptographic protocols we need to develop an approach for sampling and prove indistinguishability results.
 - Perfect sampling is out-of-reach.

Example: Modular exponentiation

- We developed a modular exponentiation in Jasmin (denotationally just "(x ^ m) mod p").
- However, the implementation makes use of specialized algorithms:
 - Montgomery ladder/form
 - Barrett reduction
- We proved that the result is correct, safe, and secure
 - Functional correctness (utilizes analysis in reals and then transfer to integer and then to machine words)
 - Memory safety properties
 - Side-channel freedom
- Implementation and proofs for "(x ^ m) mod p" ~1300loc.
- Performance wise we are 3x slower than specialized GMP library (not constant time, no correctness guarantees).

Jasmin goals

- The Jasmin workbench ambitiously aims at formal derivation of both high and low-level security properties.
- The approach needs more manpower to develop mature tools, libraries, and use cases.
- Most importantly, the resulting protocols must be executable, efficient, and provide unprecedented levels of security.

There is more!

- Resource analysis
 - In standard EC you must verify complexity of transformations by hand.
 - Resource analysis allows to prove the complexity bounds on transformations.
 - Also allows users to express properties more naturally.
- EasyPQC: for verification of post-quantum cryptography
 - Standard EC is not compatible with quantum cryptography

EasyCrypt applications

- Encryption schemes
 - Saber encryption at Crypto2022
- Commitments
 - hiding, binding, non-malleability
- Timestamping
 - Backdating-resistance analysis
- Digital signatures
 - Existential unforgeability
- Zero-knowledge
 - Sigma protocols
- Voting
- Differential privacy
- UC

Shortcomings

- Technical
 - Not (anymore) foundational
 - No parallelism
 - No timings
- General
 - Lack of educational resources
 - Partial and outdated manual
 - No good backwards compatibility
 - Tool is actively developed

Thank you!

guardtime.com

