
EasyCrypt for the working
cryptographers
Denis Firsov

+

EasyCrypt

● Toolset for reasoning about probabilistic computations with
adversarial code.

● The main application is the construction and verification of
cryptographic proofs (especially game-based).

2

+

Basics

● Total functional language with inductive datatypes:

op id ['a] : 'a -> 'a = λ x. x.

● Ambient higher-order classical logic:

lemma id_prop ['a] : forall (x : 'a), id x = x.

 proof. trivial. qed.

3

+

Distributions

● Every type is associated with the type of discrete (sub-)distributions
of its elements.

type x = int distr.

● A discrete distribution is fully defined by its mass function. i.e. by a
non-negative function f :: t -> real so that 𝚺ₓ f(x) ≤ 1.

4

+

● In EasyCrypt, cryptographic protocols are modeled as modules,
which consists of global variables and procedures.

● Modules may be parameterized by other modules (for example,
adversaries, oracles, etc.).

● Procedures are written in a simple imperative language, with while
loops and random sampling.

Modules

5

+

Example: Guessing game

6

module GuessingGame = {
 var c q : int
 var win : bool

 proc init(x : int) = {
 (c, win, q) <- (0, false, x);
 }

 proc guess(x : bits) : bool = {
 var r;
 if (c < q) {
 r <$ bD;
 win <- win || r = x;
 c <- c + 1;
 }
 return win;
 }
}.

● The module GuessingGame has three
global variables: c and q of type int, and
win of type bool.

● For any initial memory m the state of the
module is a tuple:

glob GuessingGame
 = int * int * bool.

● The player has at most q attempts (set by
initialization procedure).

● The player wins if they guess correctly at
least once.

+

Module types

● In EasyCrypt module types specify the types of a set of module
procedures (similar to interfaces in Java).

● We can specify the module type of GuessingGame as follows:

module type GuessingGame = {

 proc init(x : int) : unit

 proc guess(x : bits) : bool

 }.

7

+

● We can define a module type of protocol parties
(adversaries/players), who receive an instance of a guessing game as
a module parameter.

● An adversary must have a play() procedure which starts the game:

module type Adversary(G : GuessingGame) = {

 proc play() : unit {G.guess}

}.

● To forbid adversaries to reinitialize the game the play() procedure
can only execute the guess() procedure of the parameter game.

Module types

8

+

Probability expressions

EasyCrypt has Pr-constructs which can be used to refer to the
probabilities of events in program executions:

 Pr[r ← X.p() @ m : M r]

denotes the probability that the return value r of procedure p of
module X given initial memory m satisfies the predicate M.

9

+

Probability expressions: Example

10

We can express the probability of adversary A winning the
guessing-game with q tries (G := GuessingGame):

 Pr[G.init(q); A(G).play() @ m: G.win].

+

Program logics

● Ordinary Hoare logic:
hoare [M.p : P ⇒ Q].

● Probabilistic Hoare logic for proving probabilistic facts about single
games:
phoare [M.p : P ⇒ Q] = real.

● Probabilistic Relational Hoare Logic for proving relations between
pairs of games:
equiv [M.p ~ W.b : P ⇒ Q].

11

+

Program logics

● equiv [b <$ {0,1} ~ q <$ {0,1} : true ⇒ b = q].

● equiv [b <$ {0,1} ~ q <$ {0,1} : true ⇒ b ≠ q].

12

+

Using the program logics we can try to prove the upper bound on the
winning event (let G := GuessingGame):

lemma winPr : ∀ (A : Adversary) m q, 0 ≤ q

Pr[G.init(q); A(G).play() @ m: G.win]

 ≤ q / support_size bD.

Do you think it is provable?

Probability expressions: Example

13

+

What if G is also adversary? Hence, we must exclude G from the set of
adversaries.

lemma winPr : ∀ (A : Adversary{-G}) m q, 0 ≤ q

Pr[G.init(q); A(G).play() @ m: G.win]

 ≤ q / support_size bD.

Probability expressions: Example

14

+

¡Proof Flash!

15

proof. move => A. move => q q_pos.

have ->: Pr[Main(GG,A).main(q) @ &m : GG.win] = Pr[
Main(GG,A).main(q) @ &m : GG.win /\ (0 <= GG.c <= q)].

byequiv (_: ={glob A, glob GG, arg} /\ GG.q{1} = GG.q{2}
/\ arg{1} = q ==> _). proc.

seq 1 1 : (={glob A, glob GG} /\ GG.q{1} = GG.q{2} /\ (0
<= GG.c <= GG.q){1} /\ GG.q{1} = q).

inline *. wp. skip. progress.

 call (_: (0 <= GG.c <= GG.q){1} /\ ={glob GG} /\
GG.q{1} = q).

proc. sp. if. smt. wp. rnd. skip. smt. skip. smt.

skip. progress. auto. auto.

 fel 1 GG.c (fun x => 1%r / (supp_size bD)%r) q GG.win
[GG.guess : (GG.c < GG.q)] => //.

 rewrite BRA.sumr_const RField.intmulr count_predT.

smt (size_range).

 inline *;auto.

proc;inline *;sp 1;if;last by hoare.

wp.

conseq (_ : _ ==> r = x)=> [/# |

].

rnd;auto => &hr /> ??? .

move => z.

rewrite mu1_uni_ll. apply bDU.

apply bDL.

 smt.

 move=> c;proc;sp;inline *.

by rcondt 1 => //;wp;conseq (_: _

==> true) => // /#.

 move=> b c;proc;sp;inline *;if => //.

 sp. wp. rnd. skip. smt.

qed.

+

Example: Collision resistance

16

module type Adv = {
 proc adv(g : D → D) : D * D
}.

module CR(A : Adv) = {

 proc main(h : D → D) : bool = {
var x, x' : D;

(x, x') <@ A.adv(h);

return h x = h x'
 ∧ x ≠ x';
 }
}.

● Define set of collision resistance
adversaries.

● Define collision resistance game (aka
experiment) played by an adversary.

● We say that “h” is collision-resistant iff

 ∀ m A,Pr[CR(A).main(h) @ m : res]
 is small.

● Is CR preserved under self-composition?

+

Example: Proof by reduction

17

module B(A : Adv) = {
 proc adv(h : D → D) : D * D = {
 var x,x',r,r' : D;

 (x, x') <@ A.adv(h￮h);

 if ((h x) = (h x')) {
 r ← x;
 r' ← x';
 } else {
 r ← h x;
 r' ← h x';
 }
 return (r,r');
 }
}.

● Assume there is an adversary A
who breaks h ￮ h.

● Implement transformation B
which can use A to break CR of h.

● If we succeed then we arrive at
contradiction with assumption
that h is CR.

● Conclude that h ￮ h is CR.

+

Lemma and proof

18

lemma cr_preservation : ∀ (A : Adv) m,
 Pr[CR(A).main(h ￮ h) @ m : res]

 ≤ Pr[CR(B(A)).main(h) @ m : res].

proof.

 progress.

 byequiv => //. (* KEY: using pRHL *)

 proc.

 inline*. wp.

 call (_:true).

 wp.

 skip.

 progress.

qed.

+

Up to here…

19

● We used probabilistic Hoare logic to derive an exact bound:

lemma winPr : ∀ (A : Adversary{-G}) m q, 0 ≤ q =>
 Pr[G.init(q); A(G).play() @ m: G.win]
 ≤ q / support_size bD.

● We used probabilistic relational Hoare logic to develop a proof by reduction:

lemma cr_preservation : ∀ (A : Adv) m,
 Pr[CR(A).main(h ￮ h) @ m : res]

 ≤ Pr[CR(B(A)).main(h) @ m : res].

● What about conceptually more complicated proofs?

+

More complex arguments?

20

+

More complex proofs?

21

● Step (1) applies “the averaging
technique” by representing 𝐴.init() as a
family of distributions D.

● Step (2) applies multiplication rule to two
independent runs.

● Step (3) is an application of Jensen’s
inequality.

● Step (4) undoes the averaging.

+

More complex proofs?

22

● Problem: the built-in program logics/tactics can handle basic proof patterns, but (usually) will not work if
you need more complex mathematical results.

● The main challenge is absence of reflection of programs into their denotation.

● Ideally we want the following theorem (inside the EasyCrypt):

+

● Probabilistic reflection of modules

 lemma prob_reflection : ∃ D, ∀ m M i,
 Pr[r ← A.main(i) @ m: M (r, glob_fin A)]
 = mu (D (glob A){m} i) M.

(At its core the proof is based on Axiom of Choice.)

● We also showed a monadic structure on the program composition.

● This result allows users to transfer mathematical results to denotation of programs and the programs
themselves.

● Using this approach we derived a useful tool-set of results which are common to cryptographic proofs
○ Finite approximation: good for proofs by induction
○ Jensen’s inequality: bread-and-butter of cryptography
○ Averaging (also with infinite support)
○ Rewinding
○ …

Probabilistic reflection

23

+

Case-Study: Zero-knowledge

24

● We implemented a generic library of results for sigma-protocols.

● With reasonably small effort you can (semi-)automatically derive main
properties for your favorite ZK sigma-protocol:

○ Completeness
○ Special Soundness
○ Extractability (from special soundness)
○ Soundness (from extractability)
○ Zero-Knowledge (from one-time simulators)
○ + Sequential Composition

● Proofs rely on lots of analysis and highly unlikely to be doable in program
logics only.

+

Towards executable protocols!

25

How to get from mathematical EasyCrypt model of a protocol to the
executable protocol and preserve the established guarantees and not
introduce side-channels?

Motivation

26

● Let our security depend on a secret 256-bitstring
sampled uniformly at random.

● Also assume that guessing the string is the only
possible attack available for adversaries.

Motivation

27

● What are the odds that an adversary will get access?

● The success of an adversary who does N tries is bounded from above as
follows:

● So, in mathematical model we proved that our toy-system is “galactically”
safe.

Motivation

28

In real life the security might crucially depend on the
implementation details of the server.

Motivation

29

secret: b1 b2 b3 b4 …

guess: q1 q2 q3 q4 …

?

?

? …

?

● For example, the optimizing compiler might decide to generate machine-code which
checks equality UNTIL THE FIRST DIFFERENCE IS ENCOUNTERED.

● In this case if adversary can time responses of our server it can figure
out the secret in a byte-by-byte manner with ~10^5 queries.

Motivation

30

● As a result we have discrepancy between the predictions of a
mathematical model and the real-life implementation.

● The illustrated attack belongs to a family of side-channel attacks:
○ timing attack
○ cache side-channel attack
○ power-analysis attack
○ …

Challenge

How to show that an executable of a protocol is

cryptographically secure and is free of side-channel attacks?

31

Jasmin programming workbench

● Jasmin combines high-level and low-level constructs to support “assembly in the head” programming

paradigm.

● Programmers can control low-level features:

○ Instruction selection

○ Scheduling

○ Registers

○ Stack

● Also, programmers have “high-level” abstractions: variables, functions, arrays, loops, etc.

32

Jasmin programming workbench

● The semantics is formally defined in Coq to allow rigorous reasoning about program behaviors.

● Jasmin programs can be automatically checked for safety:

○ termination;

○ array accesses are in bounds;

○ memory accesses are valid;

○ validity of arguments.

● Moreover, Jasmin programs can be extracted to EasyCrypt theorem prover for formal verification:

○ functional correctness;

○ cryptographic security;

○ security against side-channel attacks.

33

Overview

34

Jasmin
(implement the protocol)

Assembler
(run the protocol)

EasyCrypt
(prove security/safety)

Extraction to EasyCrypt

Extraction to Assembler

Example: Swap operation

● Let us implement `swap` operation such that
○ swap(x,y,0) == (x,y)
○ swap(x,y,1) == (y,x)

● Guess what will go wrong with the naive “if-then-else” implementation.

35

Example: 256-bit `swap` in Jasmin

inline fn swap(stack u64[4] x, stack u64[4] y, reg u64 swap) -> (stack u64[4], stack u64[4]) {

 reg u64 tmp1, tmp2, mask;
 inline int i;

 mask = swap * 0xffffffffffffffff;

 for i = 0 to 4 {
tmp1 = x[i];
tmp1 ^= y[i];
tmp1 &= mask;
x[i] ^= tmp1;
tmp2 = y[i];
tmp2 ^= tmp1;
y[i] = tmp2;

 }
 return x, y;
}

36

Example: Extraction to EasyCrypt

 proc swap (x : W64.t Array4.t, y : W64.t Array4.t, swap_0 : W64.t) : W64.t Array4.t * W64.t Array4.t = {
var aux : int;
var mask : W64.t;
var i : int;
var tmp1 : W64.t;
var tmp2 : W64.t;

mask <- (swap_0 * (W64.of_int 18446744073709551615));
i <- 0;
while (i < 4) {

 tmp1 <- x.[i];
 tmp1 <- (tmp1 `^` y.[i]);
 tmp1 <- (tmp1 `&` mask);
 x.[i] <- (x.[i] `^` tmp1);
 tmp2 <- y.[i];
 tmp2 <- (tmp2 `^` tmp1);
 y.[i] <- tmp2;
 i <- i + 1;

}
return (x, y);

 }

37

Example: Functional correctness

We use the Hoare Logic of EasyCrypt to establish the functional correctness:

lemma swap_correct: ∀ a b f,

 Pr[swap(a,b,f) = if f then (b,a) else (a,b)] = 1.

38

 proc swap (x : W64.t Array4.t, y : W64.t Array4.t, swap_0 : W64.t) : W64.t Array4.t * W64.t Array4.t = {
var aux_0 i : int;
var aux mask : W64.t;
var tmp1 tmp2 : W64.t;
leakages <- LeakAddr([]) :: leakages;
aux <- (swap_0 * (W64.of_int 18446744073709551615));
mask <- aux;
leakages <- LeakFor(0,4) :: LeakAddr([]) :: leakages;
i <- 0;
while (i < 4) {

 leakages <- LeakAddr([i]) :: leakages;
 aux <- x.[i];
 tmp1 <- aux;
 leakages <- LeakAddr([i]) :: leakages;
 aux <- (tmp1 `^` y.[i]);
 tmp1 <- aux;
 leakages <- LeakAddr([]) :: leakages;
 aux <- (tmp1 `&` mask);
 tmp1 <- aux;
 leakages <- LeakAddr([i]) :: leakages;
 aux <- (x.[i] `^` tmp1);
 leakages <- LeakAddr([i]) :: leakages;
 x.[i] <- aux;
 leakages <- LeakAddr([i]) :: leakages;
 aux <- y.[i];
 tmp2 <- aux;
 leakages <- LeakAddr([]) :: leakages;
 aux <- (tmp2 `^` tmp1);
 tmp2 <- aux;
 leakages <- LeakAddr([]) :: leakages;
 aux <- tmp2;
 leakages <- LeakAddr([i]) :: leakages;
 y.[i] <- aux;
 i <- i + 1;

}
return (x, y);

 }

39

Example: Constant-timeness proof

Intuitively the following proves that `swap` does not leak anything about its
arguments:

 equiv swap_constant_time:

 swap ~ swap : ={M.leakages} ==> ={M.leakages}.

40

Example: Recap

● We used Jasmin to implement the `swap` function on 256-bit words.

● We extracted Jasmin implementation to EasyCrypt and proved functional
correctness.

● We used “leakage”-annotated extraction to prove that the function is constant-time.

● In addition, we can use automatic checking to ensure memory safety, termination,
etc.

● Finally, we can compile Jasmin to assembler which is preserves all the mentioned
properties.

41

42

`swap` is great, but what about real cryptographic protocols?

● In the Schnorr protocol the prover tries to convince a verifier that it knows a discrete logarithm of a

statement.

● Maturity test case: Implement the Schnorr protocol in Jasmin and transfer the security proofs.

Schnorr protocol in Jasmin

43

Honest prover (mathematical model)

module HonestProver = {

 proc commitment(s : statement, w : witness) : commitment = {

r <-$ uniform_distr;

return g ^ r;

 }

 proc response(b:challenge) : response = {

return r + b * w;

 }

}.

44

Honest verifier (mathematical model)

module HonestVerifier = {

 proc challenge(s : statement, c : commitment) : challenge = {

ch <$ dt;

return ch;

 }

 proc verify(r : response) : bool = {

return g ^ r = (s ^ ch) * c;

 }

}.

45

● From the perspective of conventional programming both honest verifier and honest prover are

exceptionally simple (but not the associated ZK properties).

● After all the implementation relies only on group operations, exponentiation, and sampling.

● Unfortunately, none of these operations are currently implemented in Jasmin in their full generality.

● For cryptographic protocols we need to develop an approach for sampling and prove

indistinguishability results.

○ Perfect sampling is out-of-reach.

Implementation in Jasmin?

46

● We developed a modular exponentiation in Jasmin (denotationally just “(x ^ m) mod p”).

● However, the implementation makes use of specialized algorithms:
○ Montgomery ladder/form
○ Barrett reduction

● We proved that the result is correct, safe, and secure
○ Functional correctness (utilizes analysis in reals and then transfer to integer and then to machine words)
○ Memory safety properties
○ Side-channel freedom

● Implementation and proofs for “(x ^ m) mod p” ~1300loc.

● Performance wise we are 3x slower than specialized GMP library (not constant time, no correctness guarantees).

Example: Modular exponentiation

47

● The Jasmin workbench ambitiously aims at formal derivation of both high and low-level security

properties.

● The approach needs more manpower to develop mature tools, libraries, and use cases.

● Most importantly, the resulting protocols must be executable, efficient, and provide unprecedented

levels of security.

Jasmin goals

48

● Resource analysis

○ In standard EC you must verify complexity of transformations by hand.

○ Resource analysis allows to prove the complexity bounds on transformations.

○ Also allows users to express properties more naturally.

● EasyPQC: for verification of post-quantum cryptography

○ Standard EC is not compatible with quantum cryptography

There is more!

49

+

EasyCrypt applications

● Encryption schemes
○ Saber encryption at Crypto2022

● Commitments
○ hiding, binding, non-malleability

● Timestamping
○ Backdating-resistance analysis

● Digital signatures
○ Existential unforgeability

● Zero-knowledge
○ Sigma protocols

● Voting
● Differential privacy
● UC

50

+

Shortcomings

51

● Technical
○ Not (anymore) foundational
○ No parallelism
○ No timings

● General
○ Lack of educational resources
○ Partial and outdated manual
○ No good backwards compatibility

■ Tool is actively developed

guardtime.com

+ +

+

Thank you!

