guardtime =

EasyCrypt for the working
cryptographers



EasyCrypt +

=
=

guardtime

e Toolset for reasoning about probabilistic computations with
adversarial code.

e The main application is the construction and verification of
cryptographic proofs (especially game-based).



Basics

e Total functional language with inductive datatypes:
op id ['a] : 'a -> 'a = A x. X.

e Ambient higher-order classical logic:

lemma id prop ['a] : forall (x : 'a), id x = x.

proof. trivial. ged.

rdtime

gua



Distributions

e Everytypeis associated with the type of discrete (sub-)distributions
of its elements.

type x = int distr.

e Adiscretedistribution is fully defined by its mass function.i.e. by a
non-negative function ¥ :: t -> realsothatXxf(x) < 1.

=
=

guardtime



Modules

In EasyCrypt, cryptographic protocols are modeled as modules,
which consists of global variables and procedures.

Modules may be parameterized by other modules (for example,
adversaries, oracles, etc.).

Procedures are written in a simple imperative language, with while
loops and random sampling.

rdtime

gua



=
=

Example: Guessing game

o
E

¢3

°
=
]
3
o

e The module GuessingGame has three module GuessingGame = {
global variables: c and q of type int, and

var ¢ q : int
win of type bool.

var win : bool

e For any initial memory m the state of the

roc init(x : int) =
module is a tuple: P ( ) {

(c, win, q) <- (9, false, x);
glob GuessingGame }
= int * int * bool. .
proc guess(x : bits) : bool = {

e Theplayer has at most g attempts (set by var r;
initialization procedure). if (c < q) {
r <$ bD;
e The player wins if they guess correctly at win <- win || r = x;
least once. C <- Cc + 1;
}
return win;
}

}.



Module types +

rdtime

gua

e InEasyCrypt module types specify the types of a set of module
procedures (similar to interfaces in Java).

e We can specify the module type of GuessingGame as follows:

module type GuessingGame = {
proc init(x : int) : unit

proc guess(x : bits) : bool



Module types

e We can define a module type of protocol parties

(adversaries/players), who receive an instance of a guessing game as
a module parameter.

e Anadversary must have aplay() procedure which starts the game:

module type Adversary(G : GuessingGame) = {
proc play() : unit {G.guess}

e Toforbid adversaries to reinitialize the game the play () procedure
can only execute the guess () procedure of the parameter game.

rdtime

gua



Probability expressions

EasyCrypt has Pr-constructs which can be used to refer to the
probabilities of events in program executions:

Prir « X.p() @m : M r]

denotes the probability that the return value r of procedure p of
module X given initial memory m satisfies the predicate M.

=
=

guardtime



Probability expressions: Example

We can express the probability of adversary A winning the
guessing-game with q tries (G := GuessingGame):

Pr[G.init(q); A(G).play() @ m: G.win].

=
=

guardtime



Program logics

e Ordinary Hoare logic:
hoare [ M.p : P = Q ].

e Probabilistic Hoare logic for proving probabilistic facts about single
games:

phoare [ M.p : P = Q ] = real.

e Probabilistic Relational Hoare Logic for proving relations between
pairs of games:

equiv [ M.p ~ W.b : P = Q ].

rdtime

gua



Program logics

e equiv [ b <$ {0,1} ~ g <% {0,1} :

e equiv [ b <$ {0,1} ~ g <% {0,1} :

true => b = q ].

true = b # q ].

=
=

guardtime



Probability expressions: Example

Using the program logics we can try to prove the upper bound on the
winningevent (let G := GuessingGame):

Pr[G.init(q); A(G).play() @ m: G.win]
< q / support_size bD.

lemma winPr : V (A : Adversary) m g, 0 < ¢

Do you think it is provable?

=
=

guardtime



Probability expressions: Example

What if G is also adversary? Hence, we must exclude G from the set of
adversaries.

lemma winPr : V (A : Adversary{-G}) m g, 0 <

= (q
Pr[G.init(q); A(G).play() @ m: G.win]
< q / support_size bD.

=
=

guardtime



iProof Flash!

proof. move => A. move => q (_pos.

have ->: Pr[ Main(GG,A).main(q) @ & : GG.win ] = Pr[
Main(GG,A).main(q) @ &m : GG.win /\ (@ <= GG.c <= q) ].

byequiv (_: ={glob A, glob GG, arg} /\ GG.q{1} = GG.q{2}
/\ arg{1} = q ==> _). proc.

seq 1 1 : (={glob A, glob GG} /\ GG.q{1} = GG.q{2} /\ (@
<= GG.c <= GG.q){1} /\ GG.q{1} = q).

inline *. wp. skip. progress.

call (_: (@ <= GG.c <= GG.q){1} /\ ={glob GG} /\
GG.q{1} = q).

proc. sp. if. smt. wp. rnd. skip. smt. skip. smt.
skip. progress. auto. auto.

fel 1 GG.c (fun x => 1%r / (supp_size bD)%r) q GG.win
[GG.guess : (GG.c < GG.q)] => //.

rewrite BRA.sumr_const RField.intmulr count_predT.
smt (size_range).

inline *;auto.

proc;inline *;sp 1;if;last by hoare.

wp.

conseq (_ : _ ==>r =x)=> [ /# |

rnd;auto => &hr /> ??? .
move => z.

rewrite mul_uni_11. apply bDU.
apply bDL.

smt.

move=> c;proc;sp;inline *.

by rcondt 1 => //;wp;conseq (_: _

==> true) => // /#.
move=> b c;proc;sp;inline *;if => //.
sp. wp. rnd. skip. smt.

ged.

=
=

guardtime



=
=

Example: Collision resistance

o
E
¢3
°
=
]
3
o

e Define set of collision resistance module type Adv = {
adversaries. proc adv(g : D - D) : D * D

}.

e Define collision resistance game (aka
experiment) played by an adversary. module CR(A : Adv) = {

e Wesaythat“h”is collision-resistant iff .
Y proc main(h : D — D) : bool = {
var x, x' : D;
vV m A,Pr[CR(A).main(h) @ m : res]
is small.

(x, x") <@ A.adv(h);

e IsCR preserved under self-composition? return h x = h x'

A x #x';



=
=

Example: Proof by reduction

o
E
¢3
°
=
]
3
o

e  Assume thereis an adversary A module B(A : Adv) = {

who breaks ho h. proc adv(h : D - D) : D * D = {

var x,x',r,r' : D;
e Implement transformation B
which can use A to break CR of h. (x, x') <@ A.adv(hoh);

e Ifwesucceedthenwe arrive at

contradiction with assumption if ((h X).= (h x")) {
that his CR. r" — X’.
r'o«— x';
e ConcludethathohisCR. } else {

r <« h x;

r' < h x';

}

return (r,r');



=
=

Lemma and proof

o
=

s

T
|4
<
=
o

lemma cr_preservation : V (A : Adv) m,

Pr[CR(A).main(h o h) @ m : res]

< Pr[CR(B(A)).main(h) @ m : res].

proof.

progress.

byequiv => //. (* KEY: using pRHL *)

proc.

inline*. wp.

call (_:true).

wp.

skip.

progress.

ged.



=
=

Up to here... +

o
=
s
°
|
T
=
o

e Weused probabilistic Hoare logic to derive an exact bound:
lemma winPr : V (A : Adversary{-G}) mqg, © < q =>
Pr[G.init(q); A(G).play() @ m: G.win]
< q / support_size bD.

e Weused probabilistic relational Hoare logic to develop a proof by reduction:

lemma cr_preservation : V (A : Adv) m,
Pr[CR(A).main(h o h) @ m : res]
< Pr[CR(B(A)).main(h) @ m : res].

e What about conceptually more complicated proofs?



More complex arguments?

A.init(); s < A.getState();
Pr| r; « A.main(); A.setState(s);
| — Amain) @m:ry Ary _

> Pr[A.init(); r — A.main() @ m: r]*.




More complex proofs?

e Step (1) applies “the averaging
technique” by representing A.init() as a
family of distributions D.

e Step (2) applies multiplication rule to two
independent runs.

e Step (3)is an application of Jensen’s
inequality.

e Step (4) undoes the averaging.

A.init(); s « A.getState();
Pr| ri « A.main(); A.setState(s);
ry «— A.main() @ m:ry A ry

s «— A.getState();
2 Z (DR, n) - Pr| ry « A.main(); A.setState(s);
ry — Amain() @n:ry Ary

= D m(Dfn) - Prir — Amain)@n: rl’

ZFI(D,T’ n)-Pr[r « Amain() @n:r|

©pr [ A.init(); r — A.main() @ m : r ]

21

=
=

o
E
¢3
°
=
]
3
o




More complex proofs?

e  Problem: the built-in program logics/tactics can handle basic proof patterns, but (usually) will not work if

you need more complex mathematical results.

e Themainchallenge is absence of reflection of programs into their denotation.

e Ideally we want the following theorem (inside the EasyCrypt):

Theorem 1.2. For all memories m and programs A there
exists a family of distributions DZ (with g of type Ga) such
that for all predicates M on values of type G 4:

Pr lA.main()@ o M(gA")] = u(D%*, M).

22

=
=

o
E
¢3
°
=
]
3
o




=
=

Probabilistic reflection

o
=
s
°
|
T
=
o

e Probabilistic reflection of modules

lemma prob reflection : 3 D, V. m M i,
Pr[ r < A.main(i) @ m: M (r, glob_fin A) ]
=mu (D (glob A){m} i) M.

(At its core the proof is based on Axiom of Choice.)
e Wealso showed a monadic structure on the program composition.

e Thisresult allows users to transfer mathematical results to denotation of programs and the programs
themselves.

e Usingthis approach we derived a useful tool-set of results which are common to cryptographic proofs
o  Finite approximation: good for proofs by induction

Jensen’s inequality: bread-and-butter of cryptography

Averaging (also with infinite support)

Rewinding

o O O O

23



Case-Study: Zero-knowledge

e Weimplemented a generic library of results for sigma-protocols.

e With reasonably small effort you can (semi-)automatically derive main
properties for your favorite ZK sigma-protocol:

Completeness

Special Soundness

Extractability (from special soundness)
Soundness (from extractability)
Zero-Knowledge (from one-time simulators)
+ Sequential Composition

O 0O O 0O O ©O

e Proofsrely onlots of analysis and highly unlikely to be doable in program
logics only.

24

=
=

guardtime



Towards executable protocols!

How to get from mathematical EasyCrypt model of a protocol to the

executable protocol and preserve the established guarantees and not
introduce side-channels?

25

=
=

guardtime



Motivation

26

Let our security depend on a secret 256-bitstring
sampled uniformly at random.

Also assume that guessing the string is the only
possible attack available for adversaries.

-~

}256\

secret < {0, 1

if (secret = guess)

S

)

then giveAccess()
N _/

quess < A.attack() <
- J




Motivation

e What are the odds that an adversary will get access?

e The success of an adversary who does N tries is bounded from above as
follows:

N

Pr| adversary gets access | < 2756

e So, in mathematical model we proved that our toy-system is “galactically”
safe.

27



Motivation

-~

In real life the security might crucially depend on the Secret V. {O 1}25%
)

implementation details of the server.

-

\_

guess < A.attack()

!

>if( secret = quess)

then giveAccess()

\ %

J

)

28

K



Motivation

e For example, the optimizing compiler might decide to generate machine-code which
checks equality UNTIL THE FIRST DIFFERENCE IS ENCOUNTERED.

secret: b1 b2 b3 b4
(41 I | I | |
guess: q1 g2 q3 q4

e In this case if adversary can time responses of our server it can figure
out the secret in a byte-by-byte manner with ~1015 queries.

29



Motivation

e As aresult we have discrepancy between the predictions of a
mathematical model and the real-life implementation.

e The illustrated attack belongs to a family of side-channel attacks:
o timing attack
o cache side-channel attack
o power-analysis attack
©)

30



Challenge

How to show that an executable of a protocol is
cryptographically secure and is free of side-channel attacks?

31



Jasmin programming workbench

32

Jasmin combines high-level and low-level constructs to support “assembly in the head” programming
paradigm.

Programmers can control low-level features:
o Instruction selection
o  Scheduling
o Registers
o Stack

Also, programmers have “high-level” abstractions: variables, functions, arrays, loops, etc.



Jasmin programming workbench

e Thesemanticsis formally defined in Coq to allow rigorous reasoning about program behaviors.

® Jasmin programs can be automatically checked for safety:
o termination;
o array accesses are in bounds;
o memory accesses are valid;
o validity of arguments.

® Moreover, Jasmin programs can be extracted to EasyCrypt theorem prover for formal verification:
o functional correctness;
o cryptographic security;
o  security against side-channel attacks.

33



Overview

Extraction to EasyCrypt

34

EasyCrypt
(prove security/safety)

-

-

Jasmin
(implement the protocol)

~

)

Assembler
(run the protocol)

Extraction to Assembler



Example: Swap operation

e Letusimplement swap operation such that
© swap(x,y,@) == (X)y)
o swap(x,y,1) == (y,X)

e Guess what will go wrong with the naive “if-then-else” implementation.

35



Example: 256-bit 'swap™ in Jasmin

inline fn swap(stack u64[4] x, stack u64[4]y, reg u6d4d swap) -> (stack uoc4d[4], stack uoc4d[4]) {

reg u64 tmpl, tmp2, mask;
inline int 1i;

mask = swap * Oxffffffffffffffff;

for i = 0 to 4 {
tmpl = x[1];
tmpl "= yI[i];
tmpl &= mask;
x[1i] = tmpl;

tmp?2 = ylil;
tmp2 = tmpl;
y[i] = tmp2;

}

return x, y;

}

36



Example: Extraction to EasyCrypt

37

proc swap (x : W64.t Array4.t, y : W64.t Array4.t, swap_O :

var aux : int;
var mask : W64.t;
var i : int;

var tmpl : W64.t;
var tmp2 : W64.t;

mask <- (swap_© * (W64.of_int 18446744073709551615));
i<-0;
while (i < 4) {
tmpl <- x.[1];
tmpl <- (tmpl "~ y.[i]);
tmpl <- (tmpl “& mask);
x.[1i] <- (x.[1] *~ tmpl);
tmp2 <- y.[1];
tmp2 <- (tmp2 "~ tmpl);
y.[i] <- tmp2;
i<-1+ 1;
}

return (x, y);

W64.t)

: We4.t Arrayd.t * W64.t Arrays.t

{



Example: Functional correctness

We use the Hoare Logic of EasyCrypt to establish the functional correctness:

lemma swap correct: V a b f,
Pr[ swap(a,b,f) = if f then (b,a) else (a,b)] = 1.

38



proc swap (x : W64.t Array4.t, y : W64.t Arrayd.t, swap_© : W64.t) : W64.t Arrayd.t * W64.t Arrayd.t = {
var aux_© i : int;
var aux mask : We4.t;
var tmpl tmp2 : W64.t;
leakages <- LeakAddr([]) :: leakages;
aux <- (swap_©0 * (W64.of_int 18446744073709551615));
mask <- aux;
leakages <- LeakFor(@,4) :: LeakAddr([]) :: leakages;
i<- 0;
while (i < 4) {
leakages <- LeakAddr([i]) :: leakages;
aux <- x.[i];
tmpl <- aux;
leakages <- LeakAddr([i]) :: leakages;
aux <- (tmpl "~ y.[i]);
tmpl <- aux;
leakages <- LeakAddr([]) :: leakages;
aux <- (tmpl “& mask);
tmpl <- aux;
leakages <- LeakAddr([i]) :: leakages;
aux <- (x.[i] “~° tmpl);
leakages <- LeakAddr([i]) :: leakages;
x.[1] <- aux;
leakages <- LeakAddr([i]) :: leakages;
aux <- y.[i];
tmp2 <- aux;
leakages <- LeakAddr([]) :: leakages;
aux <- (tmp2 "~ tmpl);
tmp2 <- aux;
leakages <- LeakAddr([]) :: leakages;
aux <- tmp2;
leakages <- LeakAddr([i]) :: leakages;
y.[1] <- aux;
i<-1+1;

return (x, y);



Example: Constant-timeness proof

Intuitively the following proves that "swap™ does not leak anything about its
arguments:

equiv swap constant_ time:
swap ~ swap : ={M.leakages} ==> ={M.leakages}.

40



Example: Recap

41

We used Jasmin to implement the "swap™ function on 256-bit words.

We extracted Jasmin implementation to EasyCrypt and proved functional
correctness.

We used “leakage”™annotated extraction to prove that the function is constant-time.

In addition, we can use automatic checking to ensure memory safety, termination,
etc.

Finally, we can compile Jasmin to assembler which is preserves all the mentioned
properties.



42

“swap is great, but what about real cryptographic protocols?



Schnorr protocol in Jasmin

® Inthe Schnorr protocol the prover tries to convince a verifier that it knows a discrete logarithm of a
statement.

® Maturity test case: Implement the Schnorr protocol in Jasmin and transfer the security proofs.

43



Honest prover (mathematical model)

module HonestProver = {
proc commitment(s : statement, w : witness)
r <-$ uniform_distr;
return g * r;

proc response(b:challenge) : response = {
return r + b * w;

44

: commitment = {



Honest verifier (mathematical model)

module HonestVerifier = {
proc challenge(s : statement, c : commitment)
ch <$ dt;
return ch;

}

proc verify(r : response) : bool = {
return g ~ r = (s ~ ch) * c;

}

45

: challenge

{



Implementation in Jasmin?

® From the perspective of conventional programming both honest verifier and honest prover are
exceptionally simple (but not the associated ZK properties).

e After all the implementation relies only on group operations, exponentiation, and sampling.
e Unfortunately, none of these operations are currently implemented in Jasmin in their full generality.

® For cryptographic protocols we need to develop an approach for sampling and prove
indistinguishability results.
o  Perfect sampling is out-of-reach.

46



Example: Modular exponentiation

e Wedeveloped a modular exponentiation in Jasmin (denotationally just “(x * m) mod p”).

® However, the implementation makes use of specialized algorithms:
o Montgomery ladder/form
o  Barrettreduction

e We proved that the result is correct, safe, and secure

o Functional correctness (utilizes analysis in reals and then transfer to integer and then to machine words)
o  Memory safety properties
o  Side-channel freedom

e Implementation and proofs for “(x * m) mod p” ~1300loc.

e Performance wise we are 3x slower than specialized GMP library (not constant time, no correctness guarantees).

47



Jasmin goals

e The Jasmin workbench ambitiously aims at formal derivation of both high and low-level security
properties.

® The approach needs more manpower to develop mature tools, libraries, and use cases.

® Most importantly, the resulting protocols must be executable, efficient, and provide unprecedented
levels of security.

48



There is more!

® Resource analysis
o Instandard EC you must verify complexity of transformations by hand.
o Resource analysis allows to prove the complexity bounds on transformations.
o Also allows users to express properties more naturally.

® EasyPQC.: for verification of post-quantum cryptography
o Standard EC is not compatible with quantum cryptography

49



EasyCrypt applications

Encryption schemes

o Saber encryption at Crypto2022
Commitments

o hiding, binding, non-malleability
Timestamping

o Backdating-resistance analysis
Digital signatures

o Existential unforgeability
Zero-knowledge

o Sigma protocols
Voting
Differential privacy
UC

50

rdtime

gua



Shortcomings

Technical
o  Not (anymore) foundational
o  No parallelism
o Notimings

General
o Lack of educational resources
o  Partial and outdated manual
o  No good backwards compatibility
m Toolis actively developed

51

=
=

guardtime



Thank you!

guardtime &



