
Certification of context-free grammar algorithms

Denis Firsov

Institute of Cybernetics at TUT

August 31, 2016

1 / 1

Certification

Certification refers to the confirmation of certain characteristics of an
object, person, or organization. The confirmation is often provided by

some form of review, assessment, or audit.
(Wikipedia)

2 / 1

Software certification

The correctness of a program is established by full formal verification:

The specification of the program is presented in some rigorous
mathematical language.

The program itself also must be modeled in some mathematical
formalism.

The verification is done by providing a formal proof that the model
satisfies the specification.

The validity of the formal proof is checked by a computer program.

3 / 1

Correct algorithm 6= correct implementation

Binary search algorithm was first described in 1946, but the first
implementation of binary search without bugs was published in 1962
(TAOCP, Volume 3, Section 6.2.1).

In 2015, de Gouw et al. investigated the correctness of Java sorting.
The result was a proof that java.utils.Collection.sort() is broken (by
an explicit example) and a proposal for fixing it.

4 / 1

Examples

The CompCert project (Leroy et al., 2006) performed formal
verification of a C compiler in Coq (5 years; 42k lines of Coq).

The seL4 project (Klein et al., 2010) certified an OS kernel. The
project dealt with 10k lines of C code and 200k lines of proofs in
Isabelle/HOL showing safety against code injection, buffer overflow,
general exceptions, memory leaks, etc.

The original proof of the “Four color theorem” was partly generated
by a program (written in a general purpose language) and was not
generally accepted by mathematicians as “infeasible for a human to
check by hand”. In 2005, Benjamin Werner and Georges Gonthier
formalized the proof in the Coq proof assistant.

5 / 1

Dependently typed programming

The Curry–Howard correspondence is the central observation that
proof systems and models of computation are structurally the same
kind of object.

The main idea: a proof is a functional program, the formula it proves
is the type of the program.

In this work, we use the dependently typed functional programming
language Agda. It acts both as a proof framework and as a functional
programming language with an expressive type system.

Examples:

($) : (a -> b) -> a -> b

($) f a = f a

lemma : (m n : N) → m > n → ∃[k : N] k + n ≡ m
lemma = ...

6 / 1

Compilation

Compilation, as a process of translating a program written in a
high-level language into a machine language, consists of a number of
phases:

1 lexical analysis,
2 syntax analysis,
3 semantic analysis,
4 optimisation,
5 code generation.

Crucially, low-level code produced as output must have the same
semantics as the high-level code taken as input.

The CompCert project certified a C compiler starting from semantic
analysis (handful of bugs were found later in unverified parts).

In my master thesis, I implemented a certified parser for regular
language (lexical analysis).

7 / 1

Syntax analysis

A context-free grammar is a 4-tuple G = (N,T ,R,S):
N is a finite set of nonterminals.
T is a finite set of terminals.
R is a finite set of production rules. A rule is usually denoted by an
arrow as A −→ γ, where A ∈ N and γ is a sequence of nonterminals
and terminals.
S is the start nonterminal from the set N.

Let αAβ be some sequence of symbols, and A be a nonterminal. If
there is a rule A −→ γ in R then we can derive αγβ from αAβ.

Then the language of the grammar G is the set of all strings
(sequences of terminals) derivable from the nonterminal S .

In Agda notation we have:

(Global) types N, T, and finite R.
A grammar type Grammar. (The start nonterminal is not necessarily
fixed.)
A parse tree type Tree G A s

8 / 1

Syntax analysis – example

Consider the grammar G , with N = {S}, T = {1,+}, and
R = {S −→ 1, S −→ S + S}.
Then the following is a possible derivation tree of the string ”1+1+1”:

S

S

1+

S

S

1+

S

1

: Tree G S "1+1+1"

9 / 1

Problem statement

The main interest is to implement a certified function that, given a
context-free grammar and a string, finds a derivation (parse tree) of the
string in the grammar provided.

10 / 1

Paper I

D. Firsov, T. Uustalu. Dependently typed programming with finite
sets. In Proc. of 2015 ACM SIGPLAN Wksh. on Generic Programming,
WGP ’15 (Vancouver, BC, Aug. 2015), pp. 33–44. ACM Press, 2015.

11 / 1

Finite sets constructively

In constructive logic there are many different definitions of finite sets
which collapse classically (Kuratowski finite, Dedekind finite,
Noetherian sets, Streamless sets, etc.).

From the programming standpoint, the important notion of finiteness
is listability of a set:

Listable : (X : Set) → Set

Listable X = ∃[xs : List X] (x : X) → x ∈ xs

12 / 1

Properties of listability

An important observation is that listable sets have decidable equality:

lstbl2eq : {X : Set} → Listable X

→ (x1 x2 : X) → x1 ≡ x2] ¬ x1 ≡ x2
For any set X there is a surjection from an initial segment of natural
numbers to X if and only if X is listable.

For any set X there is a bijection from an initial segment of natural
numbers to X if and only if X is listable.

13 / 1

Pragmatic finite subsets

We define a new type FinSubDesc which is parameterized by some
base set U, a decidable equality on its elements, and a Boolean flag.

FinSubDesc : (U : Set) (eq : DecEq U) → Bool → Set

A subset is described by listing its elements, e.g.:

N-subset : FinSubDesc N _ ?
=_ true

N-subset = fsd-plain (1 :: 2 :: 3 :: [])

Such a description defines a subset of U:

Elem : {U : Set}{eq : DecEq U}{b : Bool}
→ FinSubDesc U eq b → Set

Elem {U} {eq} D = ∃[x : U] ‖ x ∈? D ‖
where

∈? = ∈-dec eq

14 / 1

Properties of pragmatic finite subsets

The subset defined is listable: We have a list of elements . . .

listElem : {U : Set}{eq : DecEq U}{b : Bool}
→ (D : FinSubDesc U eq b)

→ List (Elem D)

. . . and it is complete:

allElem : {U : Set}{eq : DecEq U}{b : Bool}
→ (D : FinSubDesc U eq b)

→ (xp : Elem D) → xp ∈ listElem D

15 / 1

Listable subsets, predicate matching, and prover

We also formalized the notion of listable subset.

We proved that listable subsets generalize listable sets.

We showed that listable subsets do not imply decidable equality.

We described the necessary and sufficient conditions to treat lists of
type List ((X → Bool) × (X → Y)) as functions on X defined
in a piecewise manner.

We designed combinators that decide existential and universal
statements over decidable properties on finite sets.

16 / 1

Paper II

D. Firsov, T. Uustalu. Certified CYK parsing of context-free
languages. J. of Log. and Algebr. Meth. in Program., v. 83(5–6),
pp. 459–468, 2014.

17 / 1

Chomsky normal form

A context-free grammar G is said to be in Chomsky normal form if all
of its production rules are either of the form A −→ BC or A −→ t,
where A, B, C are nonterminals and t is a terminal; B and C cannot
be the start nonterminal. There must be a flag (nullable) which
indicates if the empty word is in the language of G .

Every string has a finite number of parse trees for a CNF grammar.

Parsing is conceptually simple with CNF grammars.
A

B C

.

s0 . . . sk−1 sk . . . sn

In this paper we work with one fixed grammar G and some predicate
isCNF which holds for G.

18 / 1

CYK parsing

s0 sn

. P0,n+1

.

Pi ,i Pi ,i+1

.

.

. . .

A linear representation of a matrix:

Mtrx s = List (∃[i : N] ∃[j : N]
∃[A : N] Tree G A s[i, j])

We can combine two matrices

m1 * m2 = { (i, j, A, cons t1 t2) | (i, k, B, t1) ← m1,

(k, j, C, t2) ← m2, (A −→ BC) ← R }

19 / 1

Certified CYK parsing

Computing parse trees for substrings of a particular length:

pow : (s : String) → N → Mtrx s

pow s 0 = { (i, i, S, empt i | nullable, i ← [1 ... n) }
pow s 1 = { (i, 1+i, A, sngl p) | p : A −→ si ∈ R }
pow s n = { t | k ← [1 ... n),

t ← pow s k * pow s (n - k) }
We prove that pow is complete:

pow-complete : (s : String) → (X : N)

→ (t : Tree G X s)

→ (0, length s, X, t) ∈ pow s (length s)
The string is in the language if there is a parse tree from starting
nonterminal.

cyk-parse : (s : String) → List (Tree G S s)

cyk-parse s = { t | (_, _, S, t) ← pow s (length s) }

20 / 1

Certified CYK parsing – termination

We formalize the idea of well-founded relations by using the concept of
accessibility:

data Acc {X : Set}(_≺_: X → X → Set)(x : X) : Set where

acc : ((y : X) → y ≺ x → Acc _≺_ y) → Acc _≺_ x
A relation is well-founded, if all carrier set elements are accessible.

Well-founded : {X : Set}(_≺_: X → X → Set) → Set

Well-founded = (x : X) → Acc _≺_ x
We prove that the < relation on natural numbers is well-founded.

<-wf : Well-founded _<_

The recursive calls of the pow function are made along this well-founded
relation.

<-lemma1 : (k : N) → k ∈ [1 · · · n) → k < n

<-lemma2 : (k : N) → k ∈ [1 · · · n) → n - k < n

21 / 1

Certified CYK parsing – memoization

We define certified memoization tables:

MemTbl s = (n : N) → ∃[m’ : Mtrx s] m’ ≡ pow n
The function pow-tbl uses the table in place of recursive calls:

pow-tbl : {s : String} → N → MemTbl s → Mtrx s

pow-tbl n tbl = if n < 2 then tbl n else

{ t | k ← [1 ... n), t ← tbl k * tbl (n - k) }
We can update the table at a particular position:

updateTbl : {s : String} → MemTbl s → N → MemTbl s

updateTbl tbl’ e l = if l 6= e then tbl’ l
else (pow-tbl l tbl’, pow≡pow-tbl)

Finally, we gradually fill the table:

pow-mem : {s : String} → N → MemTbl s → Mtrx s

pow-mem n tbl = foldl updateTbl tbl [2..n] $ n

22 / 1

Paper III

D. Firsov, T. Uustalu. Certified normalization of context-free
grammars. In Proc. of 4th ACM SIGPLAN Conf. on Certified Programs
and Proofs, CPP ’15 (Mumbai, Jan. 2015), pp. 167–174. ACM Press,
2015.

23 / 1

Normalization of CFGs

Every context-free grammar can be transformed into an equivalent one in
Chomsky normal form. This is accomplished by a sequence of four
transformations.

1 elimination of all ε-rules (i.e., rules of the form A −→ ε);

2 elimination all unit rules (i.e., rules of the form A −→ B);

3 replacing all rules A −→ X1X2 ... Xk where k ≥ 3 with rules
A −→ X1A1, A1 −→ X2A2, Ak-2 −→ Xk-1Xk where Ai are “fresh”
nonterminals;

4 for each terminal a, adding a new rule A −→ a where A is a fresh
nonterminal and replacing a in the right-hand sides of all rules with
length at least two with A.

24 / 1

Elimination of unit rules

A single step of unit rule elimination is made by the function
nu-step:

nu-step : Grammar → N → Grammar

nu-step G A = { A −→ rhs |

A −→ rhs ∈ G ∪ aux, rhs 6= A }
where

aux = { X −→ rhs | X −→ A ∈ G,
A −→ rhs ∈ G }

Now, full unit rule elimination is achieved by applying this procedure
to all nonterminals:

norm-u : Grammar → Grammar

norm-u G = foldl nu-step G (NTs G)

25 / 1

Correctness of elimination of unit rules

First, we showed that nu-step achieves some progress towards
normality of the grammar:

step-progress : (G : Grammar) → (A B : N)

→ (A −→ B) /∈ nu-step G B
Second, nu-step is sound, namely, any parse tree of a string s in the
transformed grammar should be parsable in the original grammar.

step-sound : (G : Grammar) → (A B : N) → (s : String)

→ Tree (nu-step G B) A s → Tree G A s

Third, any string parsable in the original grammar is parsable in the
transformed one.

step-compl : (G : Grammar) → (A B : N) → (s : String)

→ Tree G A s → Tree (nu-step G B) A s

There is a straightforward lifting of this lemmas to norm-u.

26 / 1

Overall normalization and correctness

The full normalization function is defined by composition:

norm : Grammar → Grammar

norm = norm-u ◦ norm-e ◦ norm-t ◦ norm-l
We proved soundness, completeness, and progress of all constituent
transformations.

Additionally, we showed that later stages preserve the progress of
earlier transformations.

27 / 1

Correctness of full normalization

The norm functions achieves Chomsky normal form:

norm-progress : (G : Grammar) → isCNF (norm G)

The norm function is sound and complete (S and S’ are start
nonterminals of G and norm G):

sound : (G : Grammar) → Tree (norm G) S’ s → Tree G S s

compl : (G : Grammar) → Tree G S s → Tree (norm G) S’ s

28 / 1

General context-free parsing

The CYK algorithm, normalization function, and the proof of soundness
can be combined to give a general context-free parsing function:

parse : (G : Grammar) → (s : String) → List (Tree G S s)

parse G s = map sound cykL

where

cnfG = norm G

cykL = cyk-parse cnfG (norm-progress G) s

Finally, the completeness of CYK implementation together with
completeness of normalization induce the completeness of a parse:

parse-complete : (G : Grammar) → (s : String)

→ Tree G S s → ∃[t’ : Tree G S s] t’ ∈ parse G s

29 / 1

Conclusions

Programming with dependent types allows one to design
datastructures and functions which are correct-by-construction.
In this thesis, we demonstrated this by formalizing the theory of
context-free languages.
We studied listability of sets in Agda and implemented viable
solutions to boilerplate-free programming with listable sets.
We used refinement techniques to implement the certified CYK
parsing algorithm for context-free grammars in Chomsky normal form.
We implemented a certified normalization procedure for context-free
grammars.
Moreover, the proof of soundness of the normalization procedure is a
function for converting any parse tree for the normalized grammar
back into a parse tree for the original grammar.
The toolset allows one to concisely define a context-free grammar,
normalize it, perform CYK parsing and transform the resulting parse
trees into parse trees for original grammar.

30 / 1

Beware of bugs in the above code; I have only proved it correct, not tried it.
(Donald Knuth)

31 / 1

