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Background: EasyCrypt

EasyCrypt is a theorem prover for verifying cryptographic constructions,
where protocols are specified as imperative programs and adversaries are
modelled by abstract program modules.
It has four built-in logics:

a probabilistic, relational Hoare logic (pRHL);
a probabilistic Hoare logic (pHL) ;
an ordinary (possibilistic) Hoare logic (HL);
an ambient higher-order logic for proving general mathematical facts and
connecting judgments in the other logics.
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Notation

We write
Pr [ r ← X .p() @ m : M ] , where

X is a program module.

p() is a procedure of module X .

m is an initial memory configuration.

r stores a result of running X .p() on memory m

M is a predicate.

3 / 34



Challenging Proof I

Theorem

Let A be a probabilistic program and let m denote a memory configuration
which represents an initial state of A. In this case, the following inequality holds:

Pr

 A.init(); s← A.getState();
r1← A.main(); A.setState(s);

r2← A.main() @ m : r1∧ r2

≥ Pr [A.init(); r ← A.main() @ m : r ]2 .
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Challenging Proof II

Pr

 A.init(); s← A.getState();
r1← A.main(); A.setState(s);

r2← A.main() @ m : r1∧ r2


(1)
= ∑

n
µ1(D

m
A ,n) ·Pr

 s← A.getState();
r1← A.main();A.setState(s);

r2← A.main() @ n : r1∧ r2


(2)
= ∑

n
µ1(D

m
A ,n) ·Pr [r ← A.main() @ n : r ]2

(3)

≥
(

∑
n

µ1(D
m
A ,n) ·Pr [r ← A.main() @ n : r ]

)2

(4)
= Pr [A.init(); r ← A.main() @ m : r ]2 .
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Challenges

The proof turns the program A.init() into a parameterized distribution of
final memories (memories after A.init() terminates).

EasyCrypt does not have a type “memory”; we cannot define a distribution
over memories because we cannot even assign it a type.

The proof makes use of results about probability distributions (e.g.,
Jensen’s inequality) which we belive is hard (or even impossible) to prove
directly using program logics (e.g., probabilistic Hoare logic).

How one can generically specify the interface of rewindable programs
(modules) which can return their own state.
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Our Main Contributions

We develop a method for reasoning about the probabilistic semantics of
programs inside EasyCrypt (we call this probabilistic reflection).

We design a set of tools to address rewindability in the EasyCrypt
framework.

We validate our results by developing a formal proof of a coin-toss
protocol based on rewinding.
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Probabilistic Reflection I

There are no valid types which refer to distribution of final memories.

However, in EasyCrypt each program has an associated variable.
(glob A){m} (which we denote by writing Gm

A ) which refers to the part of
the memory m accessible by module A.

So “effectively”, the semantics of a program can be described by looking
only at the GA-part of a memory.

We define a family of distributions Dg
A which assigns a probability to every

possible configuration of memory reachable by A given that execution
starts in state g.
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Probabilistic Reflection II

Theorem

For all memories m and programs A there exists a family of distributions Dg
A

(with g of type GA) such that for all predicates M on values of type GA:

Pr
[

A.main() @ m : M(Gfin
A )
]
= µ(DGm

A
A ,M).

A is a module.

A.main procedure of A.

m and fin are initial and final memory configurations, respectively.

Gm
A and Gfin

A values corresponding to initial and final state of A,
respectively.

DA a family of distributions describing probabilistic semantics of A.main.

µ(DGm
A

A ,M) the total probability of final states reachable from initial state
Gm

A which satisfy M.
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Probabilistic Reflection III

However, being able to reflect the distribution corresponding to a given
program is not enough.

Given a program A;B, reflection gives us distributions DAB, DA, and DB

relating to the semantics of (A;B), A, and B, respectively. However, we do
not, a priori, know how DAB is related to DA and DB.

In our formalization, DAB is shown to be the monadic bind of DA and DB.
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Properties

Finite probabilistic approximation:

Pr [ r ← A.run(); @ m : (r ,GA) /∈ L(n)]→ 0.

Averaging:

Pr
[

x
$← d ; r ← A.run(x); @ m : M(r)

]
= ∑

x∈d
µ1(d ,x) ·Pr [ r ← A.run(x); @ m : M(r) ] .

Jensen’s inequality: if X is a distribution, g maps elements of X to reals,
and f is convex

f (EX (g))≤ EX (f ◦g)
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Rewinding

Definition
The module A is rewindable if

1 There exists an injective mapping f from the type GA to some parameter
type sbits.

2 The module A must have a terminating procedure getState, so that the
execution of A.getState() in state m must return the value f (Gm

A ) without
changing the state.

Pr
[

r ← A.getState() @ m : Gfin
A = Gm

A ∧ r = f (Gm
A )
]
= 1.

3 The module A must have a terminating procedure setState, so that
whenever it gets an argument x : sbits and sets Gm

A to f−1(x) if f−1(x) is
defined. Formally, let g be of type GA then

Pr
[

r ← A.setState(f g) @ m : Gfin
A = g

]
= 1.
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Validation Properties

Commutativity:

Pr

[
s← A.getState(); r1← A.run1();A.setState(s)

r2← A.run2()@ m : M(r1, r2)

]
= Pr

[
s← A.getState(); r2← A.run2();A.setState(s)

r1← A.run1()@ m : M(r1, r2)

]
.

Multiplication rule:

Pr

[
s← A.getState(); r1← A.run1();A.setState(s)

r2← A.run2()@ m : M1(r1)∧M2(r2)

]
= Pr [ r ← A.run1(); @ m : M1(r1)] ·Pr [ r ← A.run2(); @ m : M2(r2)] .
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Coin-Toss Protocol (M. Blum, 1983)

Alice and Bob are recently divorced, living in two separate cities, and want to
decide who gets to keep the car. To decide, Alice wants to flip a coin over the
telephone. However, Bob is concerned that if he were to tell Alice the result of
his coin toss, she would adjust hers and automatically tell him that she wins.
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Coin-Toss Protocol I

b₂ ∈ {true, false}

reveals b₁ by sending

containing b₁ ∈ {true, false}

b₁ ⊕ b₂

Alice Bob
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Coin-Toss Protocol II

b₂ ∈ {true, false}

 reveals the key 

b ⊕ b₂ = 1

!b₂

b’ ⊕ !b₂ = 1

Alice Bob
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Thank you!
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