Reflection, Rewinding, and Coin-Toss in EasyCrypt J

Denis Firsov'? and Dominique Unruh®

"Guardtime
2Tallinn University of Technology
3Tartu University

January 17, 2022

1/34

Background: EasyCrypt

@ EasyCrypt is a theorem prover for verifying cryptographic constructions,
where protocols are specified as imperative programs and adversaries are
modelled by abstract program modules.

@ It has four built-in logics:

a probabilistic, relational Hoare logic (pRHL);

a probabilistic Hoare logic (pHL) ;

an ordinary (possibilistic) Hoare logic (HL);

an ambient higher-order logic for proving general mathematical facts and
connecting judgments in the other logics.

2/34

Notation

We write
Prir< X.p()@m:M], where

X is a program module.

p() is a procedure of module X.

m is an initial memory configuration.

r stores a result of running X.p() on memory m

M is a predicate.

3/34

Challenging Proof |

Theorem

Let A be a probabilistic program and let m denote a memory configuration

which represents an initial state of A. In this case, the following inequality holds:

A.init(); s < A.getState();

Pr| r < A.main(); A.setState(s); | > Pr[A.init(); r < A.main() @ m: r]?.

< Amain)@m:rnAr.

4/34

Challenging Proof

A.init(); s < A.getState(),
Pr| ry <= A.main(); A.setState(s);
o< Amain)@m:rAn

s < A.getState();
2 Y ui(DF,n)-Pr | r « A.main(); A.setState(s);
n o< A.main()@n:rAr

1 (DT, n) - Pr[r < A.main() @n : r]?

2
wi (DR, n)-Pr[r< A.main()@n: r])

Pr[A./nlt(); r Amain)@m:r]?.

5/34

Challenges

@ The proof turns the program A.init() into a parameterized distribution of
final memories (memories after A.init() terminates).

@ EasyCrypt does not have a type “memory”; we cannot define a distribution
over memories because we cannot even assign it a type.

@ The proof makes use of results about probability distributions (e.g.,
Jensen’s inequality) which we belive is hard (or even impossible) to prove
directly using program logics (e.g., probabilistic Hoare logic).

@ How one can generically specify the interface of rewindable programs
(modules) which can return their own state.

6/34

Our Main Contributions

@ We develop a method for reasoning about the probabilistic semantics of
programs inside EasyCrypt (we call this probabilistic reflection).

@ We design a set of tools to address rewindability in the EasyCrypt
framework.

@ We validate our results by developing a formal proof of a coin-toss
protocol based on rewinding.

7/34

Probabilistic Reflection |

@ There are no valid types which refer to distribution of final memories.

@ However, in EasyCrypt each program has an associated variable.
(glob A) {m} (which we denote by writing G7') which refers to the part of
the memory m accessible by module A.

@ So “effectively”, the semantics of a program can be described by looking
only at the Ga-part of a memory.

@ We define a family of distributions Dﬂ which assigns a probability to every
possible configuration of memory reachable by A given that execution
starts in state g.

8/34

Probabilistic Reflection Il

Theorem

For all memories m and programs A there exists a family of distributions Df\
(with g of type Ga) such that for all predicates M on values of type Ga:

Pr[A.main() @ m: M(G")] = u(D3* , M).

@ Ais a module.

@ A.main procedure of A.

@ m and fin are initial and final memory configurations, respectively.
°

G and Gi" values corresponding to initial and final state of A,
respectively.

D, a family of distributions describing probabilistic semantics of A.main.

,u(Df*r‘n , M) the total probability of final states reachable from initial state
Ga' which satisfy M.

9/34

Probabilistic Reflection Il

@ However, being able to reflect the distribution corresponding to a given
program is not enough.

@ Given a program A; B, reflection gives us distributions Dag, Da, and Dg
relating to the semantics of (A; B), A, and B, respectively. However, we do
not, a priori, know how Dgyg is related to D4 and Dg.

@ In our formalization, Dsg is shown to be the monadic bind of D4 and Dg.

10/34

Properties

@ Finite probabilistic approximation:
Prir< A.run(); @m: (r,Ga) ¢ L(n)] — 0.
@ Averaging:

Pr{ x & d;r« Arun(x); @m: M(r) }
= Zy1(d,x)-Pr[r<—A.run(X); ©m:M(r)].

xed

@ Jensen’s inequality: if X is a distribution, g maps elements of X to reals,
and f is convex

f(Ex(g)) < Ex(fo0)

11/34

Rewinding

Definition
The module A is rewindable if

@ There exists an injective mapping f from the type Ga to some parameter
type sbits.

@ The module A must have a terminating procedure getState, so that the
execution of A.getState() in state m must return the value f(G7') without
changing the state.

Pr{r+ AgetState() @m: G4" = G Ar=1(GR)] =1.

© The module A must have a terminating procedure setState, so that
whenever it gets an argument x : sbits and sets G to f~'(x) if ~'(x) is
defined. Formally, let g be of type Ga then
Pr[r+« AsetState(fg)@m: Gi" = g| =1.

12/34

Validation Properties

@ Commutativity:

pr| S A.getState(); ri < A.runy(); A.setState(s)
r < Arunp()@m : M(ry, 1)

_pr| S A.getState(); r < A.runy(); A.setState(s)
N rn < Aruni()@m: M(ry,r) '

@ Multiplication rule:

pr| S A.getState(); ri <— A.runi(); A.setState(s)
ro < A.I’Ul'lg()@ m : M, (I’1) A Mg(l’g)

=Pr[r< A.runi(); ©m: My(ry)]-Pr[r <« Aruna(); @m: Mx(r2)].

13/34

Coin-Toss Protocol (M. Blum, 1983)

Alice and Bob are recently divorced, living in two separate cities, and want to
decide who gets to keep the car. To decide, Alice wants to flip a coin over the
telephone. However, Bob is concerned that if he were to tell Alice the result of
his coin toss, she would adjust hers and automatically tell him that she wins.

14/34

Coin-Toss Protocol |

| % containing b: € {true, false}

flice Bob

b. € {true, false}

reveals b: by sending —

y

b @ b

15/34

Coin-Toss Protocol Il

/ré 1

flice

b. € {true, false}

Bobd

reveals the key

b’elb. =1

16/34

Thank you!

